The development of a new multiplex dipstick for the simultaneous detection of sulfonamides, (fluoro)quinolones, tylosin and chloramphenicol in honey

Stefan Weigel (RIKILT), Vincent Chabottaux (Unisensor)

42º INTERNATIONAL APICULTURAL CONGRESS APIMONDIA 2011

BUENOS AIRES, ARGENTINA 21-25th September 2011

www.conffidence.eu

CON*ff***IDENCE** project

- CONtaminants in Food and Feed : Inexpensive DEtectioN for Control of Exposure...
- Collaborative Project : FP7 European Commission
- Duration: 4 years (May 2008 April 2012)
- Partners: 16 partners from 10 countries (universities, SME, research institutes,...)
- > Budget: 7.5 Mio €
- Coordinator: RIKILT Institute of Food Safety (NL)
- Objective: Development of innovative, reliable, simple, fast and multiple screening tests for chemical contaminants and residues in food and feed

CON*ff***IDENCE** project

> Target analytes:

- Organic pollutants (PCB, BFR, PAH, PFC)
- Veterinary drugs (coccidiostats, antibiotics)
- Heavy metals (inorganic arsenic, methyl mercury)
- Biotoxins (alkaloids, phycotoxins, mycotoxins)
- Commodities: seafood, cereals, meat, dairy, eggs, honey, feed
- Techniques: dipsticks, biosensors, ELISA, flow cytometry, cytosensors, simplified GC/LC-MS

> Final goals:

- Delivering tools to improve food safety
- Enable more frequent testing
- Shift testing to the start of the supply chain

CON*ff***IDENCE** for honey

> Antibiotics

- *Electrochemical immunosensor* 12 sulfonamides < 25 μg/kg

- *Multiplex dipstick* sulfonamides, tylosin, quinolones, chlorampenicol

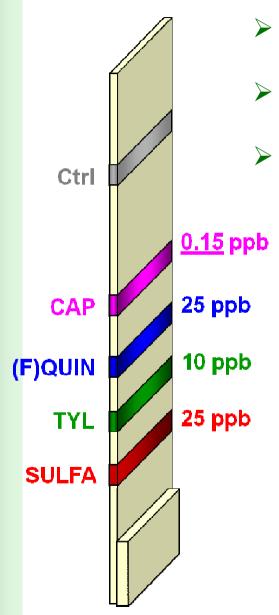
> Pyrrolizidine alkaloids (PA)

- original plan: multiplex dipstick for lycopsamine + jacobine
- major difficulties in dipstick format
- revision of scope of analytes
- → currently preparation of new antibodies, shifting to ELISA format

Antibiotics in Honey

- Use of antibiotics by some beekeepers to cure or prevent bacterial infestations of hives (foulbrood)
- 2002/03 alerts relating to chloramphenicol, later nitrofurans
- Continuous usage of tetracyclines, sulfonamides, streptomycin, tylosin, quinolones, lincomycin, erythromycin, ...
- Multiple antibiotics present in (blended) honey
- Concerns about emergence of antibiotic-resistant bacteria strains
- The use of antibiotics in beekeeping is not approved in EU, thus absence is required
- Other countries handle Maximum Residue Limits
- Testing required in both cases!

Multiplex assay concept


To develop, validate and demonstrate the impact of novel **multiplex dipsticks** for the **rapid**, **easy** and **cost-effective** detection of the presence of some frequently detected **antibiotics in honey** including...

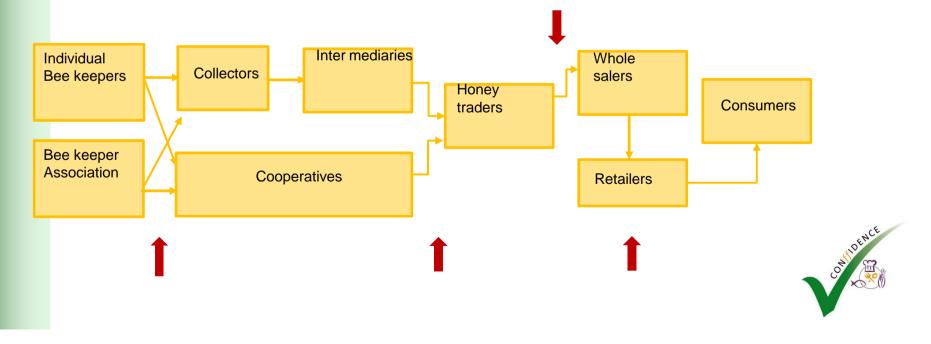
> Sulfonamides Chloramphenicol Tylosin (Fluoro)quinolones

(dipstick test available for tetracyclines)

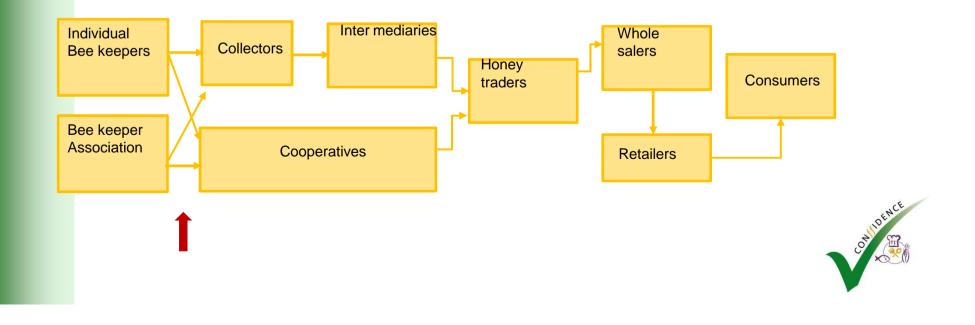
Multiplex assay concept

Competitive inhibition format (Lateral flow device);

Incorporating 4 test lines and 1 control line;


Exploiting matched pairs of antibodies and analyte-protein (OVA) competitors;

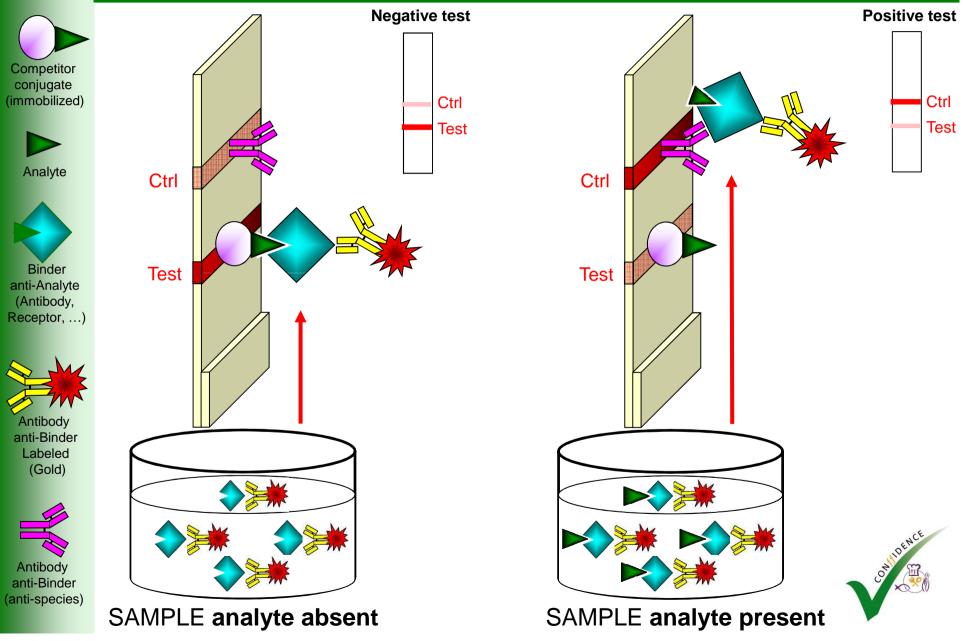
Assay formats


- Lab-based assay
 - simple extraction
 - sensitive, meets recommended reference levels (for sulfonamides, tylosin, quinolones)
- suited for honey sector QC/QA labs along supply chain as well as external contract labs

Assay formats

Field assay

- no lab equipment required, no extraction
- less sensitive than lab assay, but sufficient to detect contaminated batches from treated hives
- suited for collectors, cooperatives to test individual lots from beekeepers

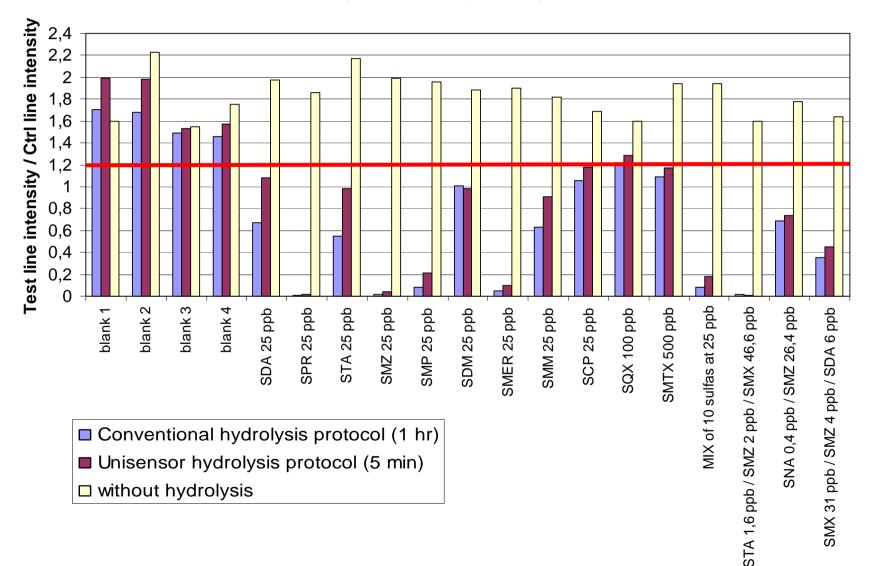


Field study

- Evaluation of the applicability and performance of the assay under field conditions
- Testing honey from routine flow (+control samples) with supplied test kit
- Interested cooperatives, collectors, aggregators can register via website or e-mail:
 - www.conffidence.eu
 - dipstick@conffidence.eu

Indirect competitive dipstick principle

Challenge for a multiple test in honey


Binding of SULFAMIDES to reductive sugars of honey and QUINOLONES better soluble in acidic conditions...

→ NEED of an **acidic hydrolysis** of the sample for drug release/solubilization...

Challenge of a multiple test for honey

Development of an easy/rapid hydrolysis for sulfa release...

Challenge for a multiple test in honey

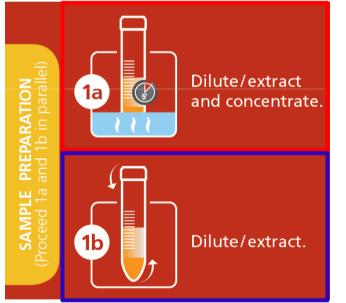
Binding of SULFAMIDES to reductive sugars of honey and QUINOLONES better soluble in acidic conditions...

→ NEED of an **acidic hydrolysis** of the sample for drug release/solubilization...

BUT...

TYLOSIN degrades in acidic condition and CHLORAMPHENICOL has a MRPL at 0.3 µg/kg in honey...

→ NEED to avoid acidic condition and to use of solvent extraction/concentration to reach high sensitivity...

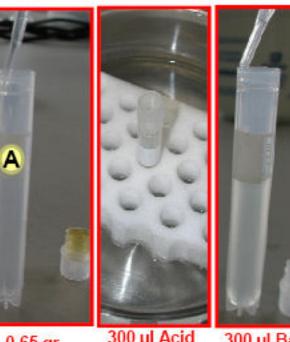


Challenge of a multiple test for honey

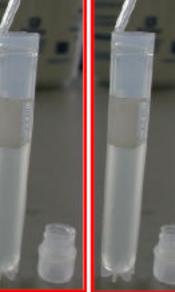
SOLUTION:

2 separate honey samples diluted in parallel...

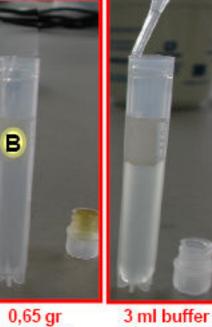
> Pool of the 2 samples just before dipstick analysis


Acidic hydrolysis (SULFA / QUINO release)

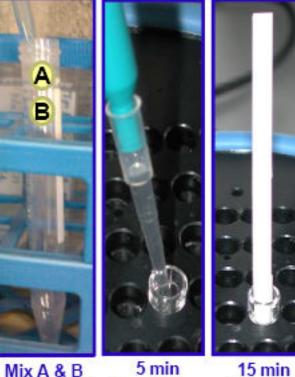
Buffer dilution (TYL / CAP protection)


Field-test test : method schematic

1. DILUTION / HYDROLYSIS


0,65 gr HONEY

300 µl Acid Hydrolysis (5 min 95℃)



300 µl Base 2,4 ml buffer Neutralization Dissolution

HONEY Dissolution 2. DIPSTICK

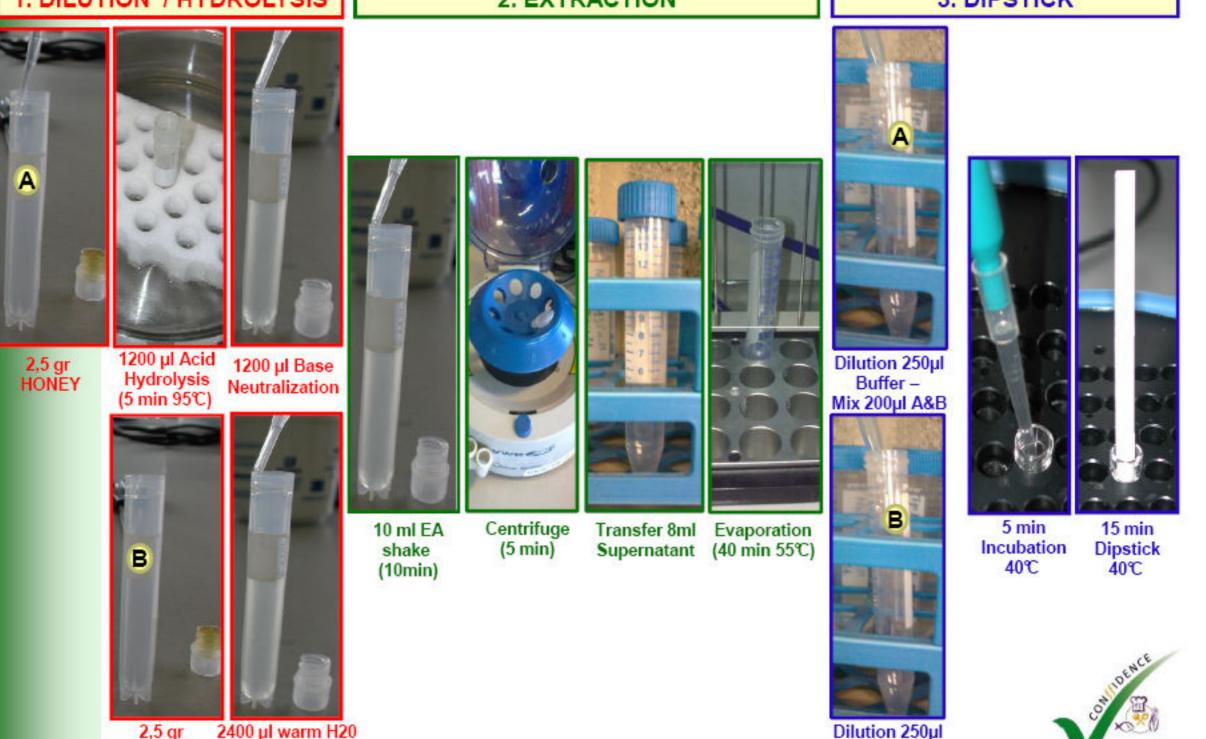
200µl/200µl

Incubation at 25°C (RT) At 25°C (RT)

<30 min TOTAL

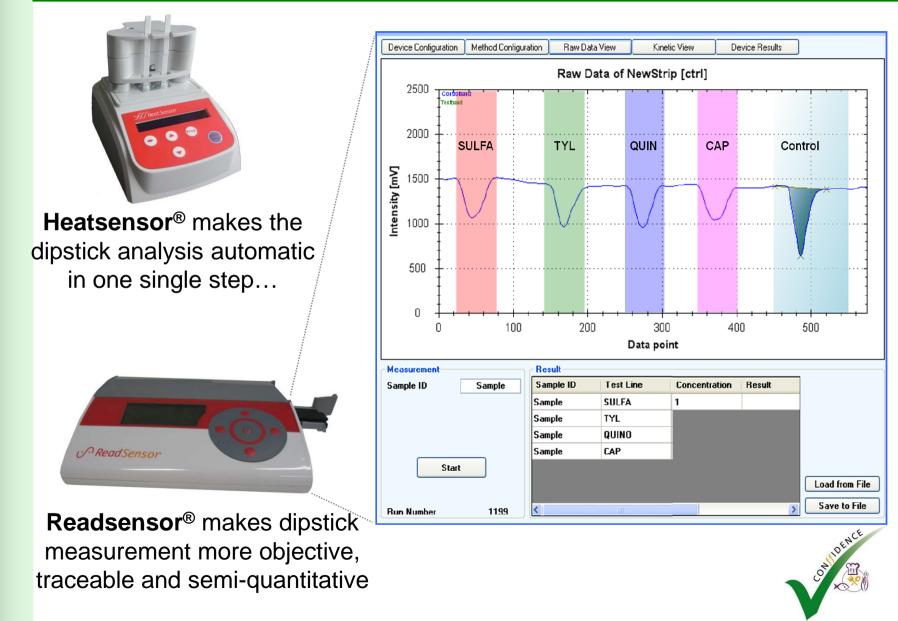
All material provided in the kit !

Lab-test format : method schematic

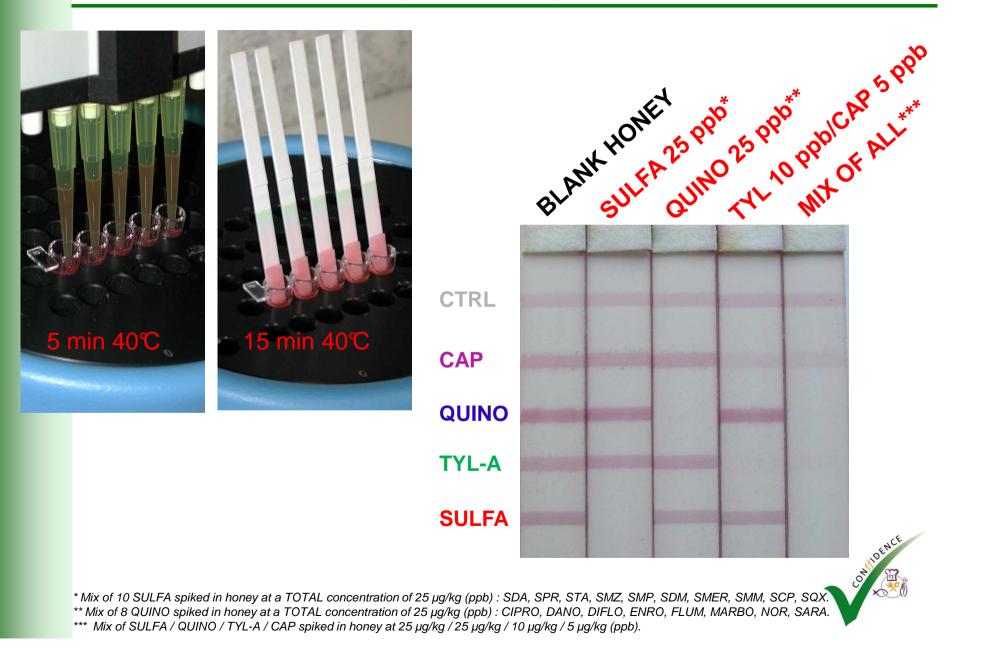

1. DILUTION / HYDROLYSIS

2. EXTRACTION

3. DIPSTICK


Buffer -

Mix 200µl A&B



2,5 gr 2400 µl warm H20 HONEY For dissolution

Optional tools for the dipstick analysis

Lab test multiplex dipstick results

Lab test validation

HONEY SAMPLES USED:

- Liquid, solid, amber, dark, pale, raw, commercial...
- Blank vs Spiked (STA / CIPRO / TYL / CAP at 25 / 25 / 10 / 5 µg/kg)

> SENSITIVITY:

- **100%** of **positive** results at 1/2 screening target concentrations for Sulfathiazole, Ciprofloxacin, Chloramphenicol

- 90% of positive result at screening target concentration for Tylosin

RUGGEDNESS (n=20):

- Temperature for extract evaporation = 50° +/-5°
- Time flexibility to read result = **Directly** but OK after **10** & **20 minutes**
- Potential decrease of Tylosin sensitivity for raw honey containing wax
- SPECIFICITY (compounds at 50µg/kg) :
- No interference on the test with other antibiotics
- Very slight crossreactivity of FQ line with Fumagillin

SENSITIVITY (µg/kg – ppb)

Sulfonamide compounds	LoD LAB	LoD FIELD	CRL**	(Fluoro)quinolone compounds	LoD LAB	LoD FIELD	CRL**
Sulfapyridine	<10	<50	50	Enrofloxacin	<25	5-25	50
Sulfamethazine	<25	<50		Ciprofloxacin	<25	50	
Sulfamethoxypyridazine	25	50-100		Danofloxacin	25-50	<100	
Sulfamerazine	25	50-100		Difloxacin	250	<500	
Sulfamonomethoxine	25	50-100		Marbofloxacin	50	<100	
Sulfadiazine	25	50-100		Norfloxacin	25	50	
Sulfadimethoxine	25	50-100		Sarafloxacin	>500	-	
Sulfathiazole	25	50-100		Flumequine	>500	-	
Sulfachloropyridazine	25	50-100		Other compounds	LoD	LoD	CRL**
Sulfaquinoxaline	50	<200			LAB	FIELD	
				Tylosin-A	10	10-50	10

** European limits or recommended concentrations in honey (CRL – AFSSA-LMV France – SANCO /2006/3228).

Chloramphenicol

5

0.3

<60

Availability of the MULTIPLEX

- Extern Lab Validation in progress (FERA, UK) and Inter Lab Validation in January 2012
- Completing the range of existing UNISENSOR's dipstick assay detecting antibiotics in Honey (Tetracyclines, Sulfamides)
- Kit produced and commercialized by <u>Unisensor</u> under the name **bee**4sensor

www.unisensor.be

Conclusions

- Development of a multiplex dipstick assay detecting antibiotics in honey...
- 30min
- Rapid Results in 30 (field) or 90 min (lab)
- Multiple Detection of more than 18 relevant antibiotics in one single test
- Discriminating Direct determination of the antibiotic class in case of positive result
- ✓ Flexible Flexibility regarding sensitivity, time and material availability
- ✓ User-friendly Clear visual result or reader interpretation
- \checkmark Convenient Performable on site or in the lab
- ✓ Reliable and robust
- ✓Cost-Effective Does not need any expensive instrumentation

Thanks to...

- Multiplex dipstick development :
 - UNISENSOR S.A. (Belgium)
 - CER (Belgium)
 - CSIC (Spain)

Matrix preparation & lab validation :

- FERA (United Kingdom)
- NESTLE NRC (Switzerland)
- Project coordination :
 - RIKILT (The Netherlands)
- > Funding :
 - CONFFIDENCE (European Commission FP7

Grant agreement nº211326)

