

Joint Research Centre (JRC)

CROSS-CONTAMINATION OF COCCIDIOSTATS FROM TARGET FEED TO NON-TARGET FEED: AN ANALYTICAL CHALLENGE

Dr. Ursula VINCENT

IRMM - Institute for Reference Materials and Measurements

Geel - Belgium

http://irmm.jrc.ec.europa.eu/

http://www.jrc.ec.europa.eu/

Scope

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

2

- Coccidiosis is a disease affecting in particular poultry and cattle.
- →Economics: Coccidiosis in cattle is one of the five most economically important diseases of the cattle industry.
- →Estimated annual cost for the industry: ≥ 100 million EUR
- of the five most attle industry.
- Council Regulation No 2821/98 amending Directive 70/524/EEC concerning additives in feedingstuffs: Ban of certain antibiotics.
- Commission Regulation (EC) No 1831/2003
- →Only 11authorised anticoccidial substances remaining
- →need for control methods at authorised and crosscontamination levels

Scope ctd.

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

3

Cross-contamination

- assessment of the risks involved for animal and public health as a consequence of unavoidable crosscontamination of frequently used coccidiostats authorised as feed additive into non-target feeds and consequently the presence of such residues in food of animal origin.
- → Commission Directive 2009/8/EC: maximum levels of unavoidable carry-over of coccidiostats or histomonostats in non target feed
- → Maximum levels (ML's) in eggs have been set by the European Union (Commission Regulation (EC) No 124/2009)

Maximum levels of unavoidable carry-over of
coccidiostats in non-target feed (mg of active
substance/kg feed)

	poultry	pig	cattle	calf
narasin	0.70	2.10	2.10	2.10
lasalocid	1.25	3.75	1.25	1.25
semduramicin	0.25	0.75	0.75	0.75
maduramicin	0.05	0.15	0.15	0.15
salinomycin	0.70	2.10	2.10	2.10
monensin	1.25	3.75	1.25	1.25
robenidine	0.70	2.10	2.10	2.10
decoquinate	0.40	1.20	1.20	1.20
halofuginone	0.03	0.09	0.09	0.09
diclazuril	0.01	0.03	0.03	0.03
nicarbazin	0.50	1.50	1.50	1.50

	Maximum content of coccidiostats in eggs (ML's) (μg/kg wet weight)
narasin	2
lasalocid	5*
semduramicin	2*
maduramicin	2*
salinomycin	3
monensin	2*
robenidine	25
decoquinate	20*
halofuginone	6
diclazuril	2
nicarbazin	100

^{*} in other food stuff of animal origin

Methods and challenges

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

6

 LC-MS/MS methods: e.g. developed and in-house validated at JRC-IRMM

- Rapid methods: multiplex immunoassays
- → Collaborative European project CONffIDENCE*, WP2a

^{*} CONffIDENCE is funded by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 211326; Project coordinator: RIKILT - Dr. Jacob de Jong

JRC CONffIDENCE multiplex immunoassay

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

- Collaborative European project CONffIDENCE, WP2a
- Partners: RIKILT, CER, FERA, QUB, NUTRECO, **JRC**
- **≻**Objectives:
 - ✓ Validated flow cytometry based multiplex immunoassay for residues of lasalocid A, monensin, salinomycin, narasin, nicarbazin and diclazuril in eggs
 - ✓ Cross- contamination in non-targeted feed (laying hens feed)
 - ✓ Simplified sample preparation protocols for eggs and feed
 - ✓ Carry-over study of lasalocid from laying hens feed to eggs. aiming at contribution to a predictive hazard behaviour model.

JRC CONffIDENCE multiplex immunoassay

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

- **► Methodology principle: flow cytometry based multiplex** immunoassay (FCI) using the Luminex™ platform.
 - Simultaneous detection of coccidiostats: FCI combined MultiAnalyte Profiling (xMAP) technology.

- > Antigens (drugs or drug-protein conjugates) covalently coupled on carboxylated polystyrene microspheres (beads) internally dyed with a red and an orange fluorophore.
- > The Luminex contains a red laser for identification of the bead set by its characteristic colour and a green laser for the quantification of the amount of fluorescent dye corresponding with the amount of antibodies bound to the beads.
- > This combination makes it possible to simultaneously measure up to 100 different biomolecular reactions in a single well.

JRC CONffIDENCE multiplex immunoassay Poster 19

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

> Method under development

Principle of the multiplex inhibition assay in a well. The 3 different antibodies are represented in green, blue and red.

Production of conjugates: QUB

Production of antibodies: CER

Production of eggs materials: CER, FERA

Production of feed materials: NUTRECO, CER Inutreco

Multiplex immunoassay in buffer Antibodies production and characterisation,

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

10

no cross-reaction, including with the other authorised coccidiostats:

antibodie	es are specific	LOD (DoW)		Conjugate on the bead	IC ₅₀
		Egg (µg kg ⁻¹)	Feed (mg kg ⁻¹)		(ng ml ⁻¹)
	Monensin	75	1.25	Monensin	25*
	Salinomycin	75	0.7	OVA-Salinomycin	0.3
	Narasin	75	0.7	OVA-Narasin	0.3
	Lasalocid	75	1.25	OVA-Lasalocid	1
*	Diclazuril	* 75	*0.01	★ HRP-Dictazuril	0.6
	Nicarbazin	100	0.5	OVA-GAN	10

Lasalocid

Salinomycin

Nicarbazin

Diclazuril

Monensin

Narasin

12

Multiplex immunoassay in buffer

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

11

Developed multiplex	Assay involved	IC ₅₀ (ng ml ⁻¹)
5-Plex	Salinomycin	0.1
	Nicarbazin	9
	Diclazuril	0.4
	Lasalocid	0.3
	Monensin	34
3-Plex	Narasin/ Salinomycin	0.1 / -
	Nicarbazin	11
	Diclazuril	0.5
2-Plex	Lasalocid	0.1
	Monensin	39*

Calibration curves of the 3plex assay (nicarbazin, diclazuril, salinomycin and narasin) and of the 2-plex assay (monensin and lasalocid) in buffer.

Multiplex immunoassay in matrix

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

12

Egg materials

	Target concentration (µg kg ⁻¹)	Max. Exp. incurred concentration (μg kg ⁻¹)	Amount of material available (kg)
Diclazuril	75	158	2
Narasin	75	30	2 (9 - 30 µg kg ⁻¹)
Nicarbazin	75	1900	2
Monensin	75	37	2 (13 - 37 μg kg ⁻¹)
Salinomycin	75	191	2
Lasalocid	75	7416	2

Multiplex immunoassay in matrix

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

13

Feed materials

© European Communities, 2008	Target concentration (mg kg ⁻¹)	Mean Exp. Concentration (mg kg ⁻¹)	Amount of available material (kg)
Blank	0	0	5
Diologuril	0.01	0.007	1
Diclazuril	0.20	0.17	0.5
Nersein	0.70	0.58	1
Narasin	14.00	14.18	0.5
Nicorbozio	0.50	0.57	1
Nicarbazin	10.00	11.57	0.5
	1.25	1.09	1
Monensin	25.00	22.42	0.5

Multiplex immunoassay in matrix

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

14

Feed materials

	Target concentration (mg kg ⁻¹)	Mean Exp. Concentration (mg kg ⁻¹)	Amount of available material (kg)
Salinomycin	0.70	0.92	1
Salinomycin	14.00	15.30	0.5
	1.25	1.29	1
Lasalocid	25.00	21.30	0.5
	3.13	-	5
	12.50	-	5

CONffIDENCE multiplex immunoassay

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

15

First results in eggs

Calibration curves of nicarbazin, diclazuril, salinomycin, monensin, lasalocid and narasin in egg

➤ Sensitivity of the combined 3-plex and 2-plex assays promising

	ML's in eggs (μ <mark>g/kg</mark>)
narasin	2
salinomycin	3
nicarbazin	100
diclazuril	2
lasalocid	5*
monensin	2*

Developed multiplex	Assay involved	IC ₅₀ (ng ml ⁻¹) in buffer
3-Plex	Narasin/ Salinomycin	0.1 / -
	Nicarbazin	11
	Diclazuril	0.5
2-Plex	Lasalocid	0.1
	Monensin	39*

JRC – IRMM: LC-MS/MS method Poster 203

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

16

Simultaneous determination of the 11 authorised coccidiostats in poultry, cattle, pig and calf feed at both authorised and cross-contamination levels

Sample preparation:

- Liquid/solid extraction with an ACN:MeOH mixture
- Sonication, agitation and centrifugation
- Filtration on Nylon filters
- Standard addition ("universal approach") in the extracts

Note: for calf feed, an extra-step of de-fattening the extracts with n-hexane is introduced

LC-MS/MS determination:

- > Step-gradient RP-HPLC on a C8 column, mixed ACN:H2O, MeOH:ACN mobile phases, 0.1% formic acid, 350 μl min⁻¹, analysis time: 20 min
- > ESI+, ESI- in multi-reaction monitoring mode
- ➤ Main transitions used for the quantification

An example: poultry feed

Single-laboratory validation

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

18

≥3 days scheme

- > 3 concentrations
 - > ½ target level C1,
 - ➤ target level C2,
 - ≥ 2*target level C3
- > 3 replicates per concentration and per day
- **≥** 3 injections per sample
- > Quantification by standard addition

easurement:

 S_r , standard deviation for repeatability, $S_{lnt.}$, standard deviation for intermediate precision

RSD_r (%), relative standard deviation for repeatability,

RSD_{Int.}, (%), relative standard deviation for intermediate precision

RR%: Recovery

erinary Drug Residue	e Analysis – 1 ·	- 4 June 20	10, Ghent,	Belgium					19	
	Target value	Mean value	S _r	Sint.	RSD _r %	RSD _{Int.}	RR %	S _r %	S _{int.} %	Horrat value
Analyte	(mg kg ⁻¹)		,,		,,	,,				
	0.03	0.03	0.002	0.002	7.51	7.51	107	8.72	0.00	0.27
Maduramicin	0.05	0.06	0.004	0.004	7.02	7.02	114	8.01	8.01	0.29
	0.10	0.10	0.007	0.007	7.04	7.04	99	7.08	7.08	0.31
	0.13	0.13	0.014	0.017	10.54	12.80	106	10.87	13.84	0.49
Semduramicin	0.25	0.30	0.01	0.014	3.34	4.67	120	3.91	5.46	0.17
	0.50	0.50	0.052	0.052	10.39	10.39	100	10.47	10.47	0.59
	0.35	0.38	0.015	0.015	3.91	3.91	110	4.27	4.27	0.21
Narasin	0.70	0.73	0.018	0.018	2.46	2.46	105	2.52	2.58	0.15
	1.40	1.47	0.039	0.059	2.66	4.02	105	2.82	4.21	0.18
	0.35	0.36	0.019	0.02	5.26	5.54	103	5.57	5.63	0.28
Salinomycin	0.70	0.71	0.021	0.021	2.97	2.97	101	2.98	2.98	0.18
	1.40	1.37	0.037	0.037	2.69	2.69	98	2.65	2.65	0.18
	0.63	0.72	0.034	0.046	4.70	6.35	116	5.44	7.39	0.28
Lasalocid	1.25	1.43	0.035	0.039	2.45	2.72	115	2.80	3.13	0.16
	2.50	3.09	0.095	0.131	3.08	4.24	123	3.80	5.25	0.23
	0.63	0.68	0.047	0.047	6.95	6.95	108	7.45	7.45	0.41
Monensin	1.25	1.31	0.155	0.155	11.83	11.83	105	12.44	12.44	0.77
	2.50	2.83	0.282	0.282	9.98	9.98	113	11.27	11.27	0.73
	0.02	0.01	0.001	0.001	8.31	8.31	80	6.34	6.34	0.27
Halofuginone	0.03	0.03	0.004	0.004	14.84	14.84	90	11.69	11.69	0.54
	0.06	0.05	0.007	0.007	13.73	13.73	85	10.93	10.93	0.55
	0.35	0.34	0.007	0.01	2.07	2.96	96	2.13	2.85	0.11
Robenidine	0.70	0.65	0.012	0.012	1.85	1.85	93	1.71	1.71	0.11
	1.40	1.33	0.033	0.071	2.48	5.33	95	2.37	5.10	0.16
	0.25	0.26	0.008	0.008	3.08	3.08	104	3.34	3.34	0.16
DNC (Nicarbazin)	0.50	0.50	0.007	0.009	1.40	1.81	100	1.37	1.88	0.08
, ,	1.00	1.01	0.016	0.019	1.59	1.88	101	1.64	1.92	0.10
	0.005	0.004	0.0010	0.0010	22.35	22.35	89	12.88		0.62
Diclazuril	0.010	0.010	0.0010	0.0010	10.36	10.36	97	7.15	7.15	0.32
	0.020	0.020	0.0010	0.0010	5.07	5.07	99	6.76	6.76	0.18
	0.20	0.20	0.005	0.005	2.54	2.54	98	2.48	2.48	0.12
Decoquinate	0.40	0.39	0.007	0.007	1.81	1.81	97	1.78	1.78	0.10
	0.80	0.76	0.019	0.022	2.49	2.88	95	2.40	2.75	0.15

JRC Performance characteristics poultry feed –

Overall recovery

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

	Mean RR%	Sr%	S _{Int.} %
Maduramicin	107	10	10
Semduramicin	109	14	14
Narasin	106	5	5
Salinomycin	101	4	4
Lasalocid	118	7	8
Monensin	109	11	11
Halofuginone	85	10	10
Robenidine	95	3	4
DNC (nicarbazin)	102	3	3
Decoquinate	97	3	3

RR (%): Mean percentage recovery rate of the recovery rates obtained on the three concentrations. Sr %, standard deviation for repeatability, S_{int} %, standard deviation for intermediate precision

21

CONffIDENCE project:

- > Performance to be increased for monensin
- > Sample preparation to be improved
- Performance in egg extracts to be confirmed
- > Performance in feed extracts to tested
- >JRC IRMM LC-MS/MS method:
 - Collaborative study
 - ➤ Submission for CEN standard (CEN TC 327 WG3)

The Team

Sixth International Symposium on Hormone and Veterinary Drug Residue Analysis – 1 - 4 June 2010, Ghent, Belgium

22

>JRC - IRMM:

> Zigmas Ezerskis, Mostafa Chedin, Christoph von Holst

CONffIDENCE partners:

- > RIKILT: Monique Bienenmann-Ploum, Mirjam van Aalderen, Willem Haasnoot, Michel Nielen
- > CER: Anne-Catherine Huet, Philippe Delahaut
- QUB: Katrina Campbell, Terence Fodey, Chris Elliott
- > FERA: Matthew Sharman, Sara Stead
- > NUTRECO: Albert Swinkels

Thanks for your attention