Technical University of Denmark

Determination of inorganic arsenic in food and feed by MAE-SPE-HG-AAS – a simple, inexpensive and fast speciation alternative

Rikke V. Hedegaard, Marianne Hansen, Erik H. Larsen and Jens, J. Sloth

National Food Institute (DTU Food) Technical University of Denmark

Department of Food Chemistry at DTU Food

Research, consultancy to authorities, teaching

Analysis in food for:

- Pesticides
- Veterinary drug residues
- Migration from Food Contact Materials
- Biotoxins
- Organic pollutants (POPs)
- Metals and minerals
- Nutrients and vitamins
- Food additives

Todays agenda

Speciation of arsenic, WHY?
 EU-projects

- CEN Standard
- Confidence
- Background
- Speciation af arsenic
- Development of AAS-method
- Results
- Quistions?

CEN/TC 327/WG 4 "Heavy metals, trace elements and minerals" Work item: Inorganic arsenic

 "Animal feeding stuffs – Determination of inorganic arsenic"

Project leader: Jens J. Sloth

• Scope:

• The aim is to develop a European standard method for the determination of inorganic arsenic in marine-based feedingstuffs for animals.

European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung

CONtaminants in Food and Feed: Inexpensive DEtectioN for Control of Exposure (CONFIDENCE)

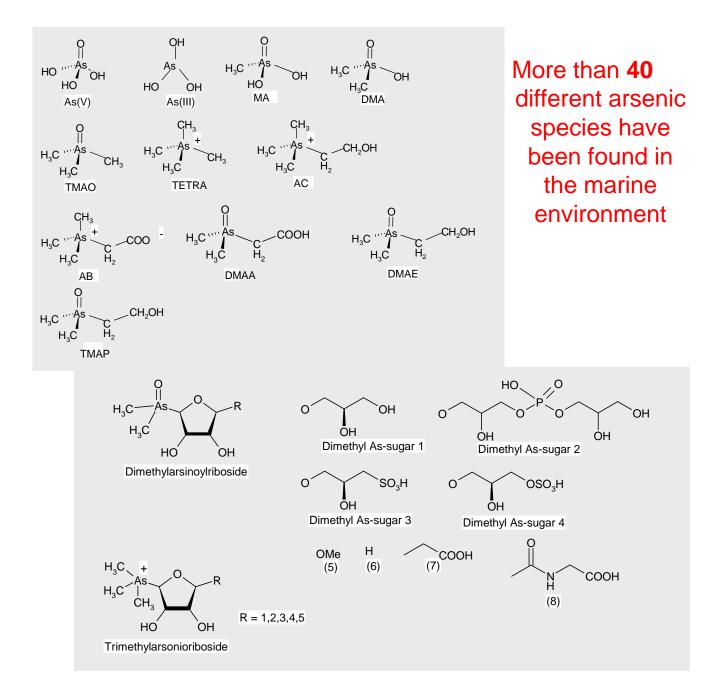
- Improvement of consumer exposure assessments. The developed fast and cost-efficient methods will allow a higher sampling and analysis density in monitoring. Thus, a better understanding of contaminant levels in food and feed will be achieved.
- Large EU-project, Several other work packages measuring: Persistent Organic Pollutants (POPs), Perfluorinated compounds (PFCs): Pesticides, Veterinary drugs, Heavy metals, Biotoxins.
- The main task is to develop a SPE-AAS based method for quantification of inorganic As in both food of marine origin and feed

CONFIDENCE.....

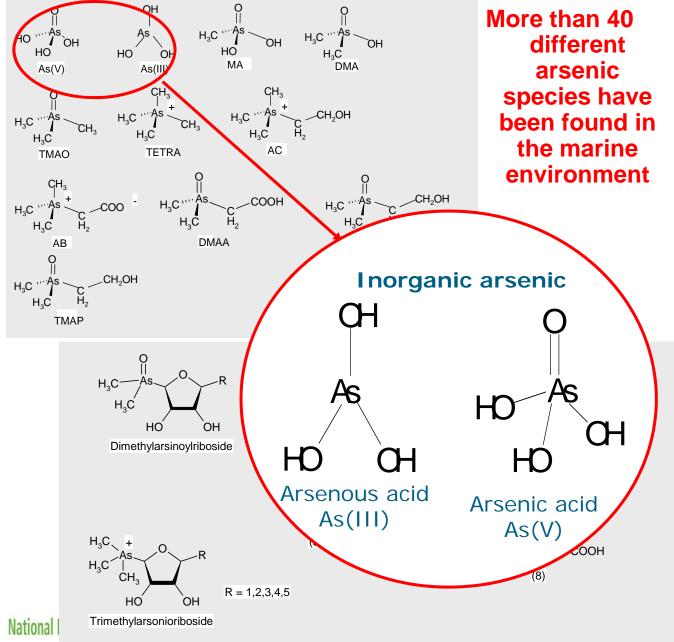
 Additionally develop a SPE-AAS based method for quantification of **methyl mercury** in feed and food of marine origin.

A **already developed** HPLC or GC-ICPMS method for detection of either inorganic arsenic or methylmercury will be used as support for quantification of both inorganic arsenic and methylmercury.

Arsenic - occurrence


High concentrations of arsenic has been found in samples from the marine environment.

Seawater	1 - 2	µg/L
Marine fish	0,2 - >100	mg/kg
Marine invertebrates Marine algae	0,2 - >100 0,02 - 40	mg/kg mg/kg
Freshwater fish	<0,01 - 2	mg/kg
Terrestrial biota	<0,2	mg/kg


All results on wet weight basis

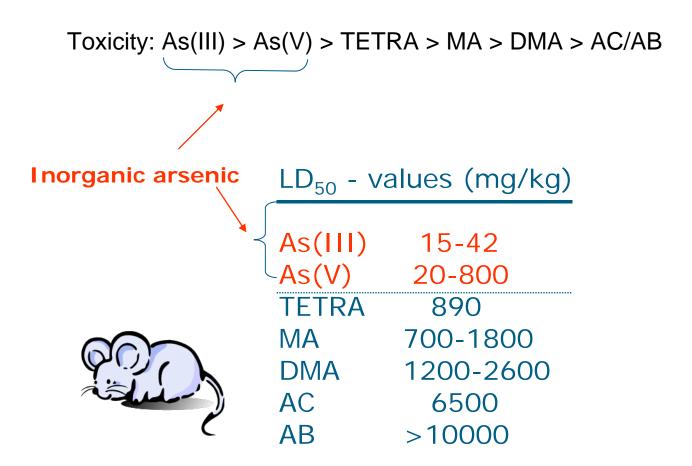
Marine organisms can bioaccumulate arsenic by a factor of up to **100.000** compared with seawater!!!

Arsenic compounds in the marine environment

Arsenic compounds in the marine environment

Arsenic – chronic toxicity

Long term exposure => skin diseases


- Keratosis, gangrene, melatosis
- Skin cancer
- ... and also
- lung, kidney, liver, bladder cancers
- Cancer slope factor: 1.5 (mg kg⁻¹ day⁻¹)⁻¹ (US EPA 2005)

WHO PTWI for inorganic arsenic: 15 µg/kg bw/week (**P**rovisional **T**olerable **W**eekly **I**ntake) For a 70 kg person => 150 µg / day

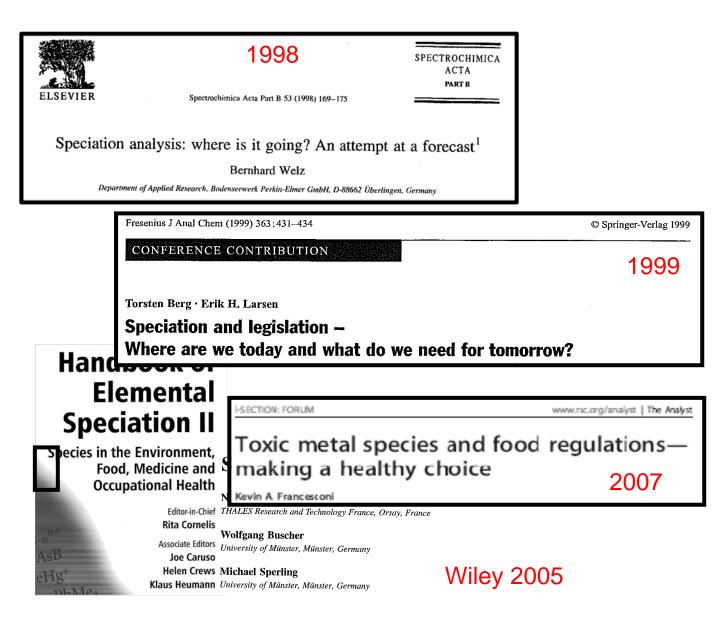
Arsenic - toxicity

Values for mice and rats

Kaise & Fukui (1992); Shiomi (1994); Donohue & Abernathy (1999)

Commission Directive 2003/100/EC on animal feed

Un desirable substan ces	Products intended for animal feed		
(1)	(2)	(3)	
'1. Arsenic (⁸)	Feed materials with the exception of:	2	
Max leve	— meal made from grass, from dried lucerne and from dried clover, Santo ed tot at pulp and dried molasses sugar beet pulp	4	
arsenic expeller		4 (%)	
	 phosphates and calcareous marine algae 	10	
	15		
	20		
	 feedingstuffs obtained from the processing of fish or other marine animals 	15 (%)	
	- seaweed meal and feed materials derived from seaweed	40 (%)	
	Complete feedingstuffs with the exception of:	2	
Footnot	e in the Commission of the dingstuffs for fur animals	6 (%)	
	Complementary feedingstuffs with the exception of:	4	
	— mineral feedingstuffs	12	


Upon request of the competent authorities, the responsible operator must perform an analysis to demonstrate that the content of inorganic arsenic is lower than 2 ppm. This analysis is of particular importance for the seaweed species *Hizikia fusiforme*.

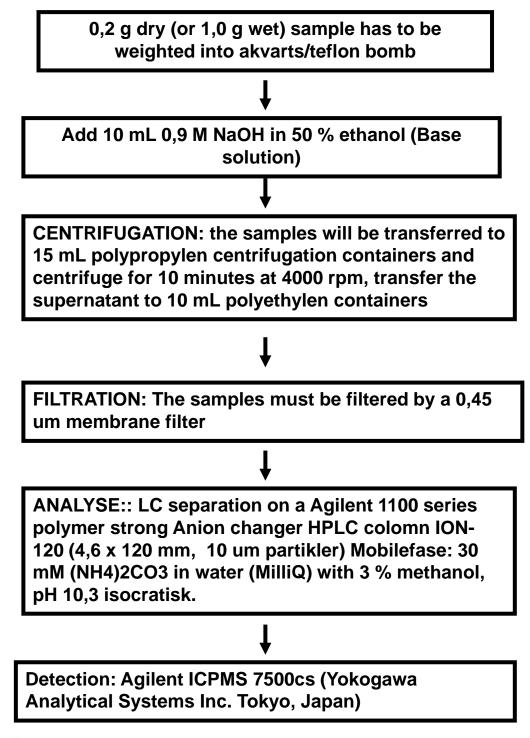
Arsenic and food/feed control – present status

- Food no maximum levels established
- Feed maximum levels for total arsenic
- EFSA opinion on arsenic in food expected in 2009
- CEN (European Standardization Organization)
- TC327 WG4 Feedingstuffs (Heavy metals and minerals)
- TC275 WG10 Foodstuffs (Trace elements)

Speciation and regulation - some historical viewpoints

Sloth et al, J.Agri.Food Chem, 2005, 53, 6011-6018

Sample identification	Inorganic arsenic	Total arsenic
Salmon (Salmo salar)	< 0.0006	1.9 ± 0.2
Cod (Gadus morhua)	< 0.0006	17 ± 2
Cod (Gadus morhua)	< 0.0006	15 ± 2
Wolffish (Anarhichas lupus)	< 0.0006	4.1 ± 0.5
Wolffish (Anarhichas lupus)	< 0.0006	31 ± 4
Anglerfish (Lophius piscatorius)	< 0.0006	15 ± 2
Anglerfish (Lophius piscatorius)	< 0.0006	44 ± 6
Atlantic halibut (Hippoglossus hippoglossus)	Fish muscle	12 ± 1
Mackerel (Scimb combrus)	< 0.0006	1.7 ± 0.2
Mackerel (Scomber scombru	< 0.0006	2.8 ± 0.4
	< 0.0006	1.5 ± 0.2
Herring (Clupea harengua)	< 0.0006	1.7 ± 0.2
Herring (Clupea harengus)		1.7 ± 0.2
Mackerel (<i>Scombe combrus</i>) Mackerel (<i>Scomber scombrus</i>) Herring (<i>Clupea harengus</i>) Herring (<i>Clupea harengus</i>) Herring (<i>Clupea harengus</i>) Tuna fish (Thunnus alalunga) Lobster, tail meat (<i>Homarus gammarus</i>)	990,0006 the 90,001 ap	0.9 ± 0.1
Lobster, tail meat (Homarus gammarus)	0,0006	en ^{14±2}
Lobster, tail meat (Homarus gammarus) Lobster, head and thorax meat (Homarus gammarus)	hi $-0.030 0.00f$	22 - 3
Crab, white meat (Cancer pagurus)	0.016 ± 0.002	
Crab, head and thorax meat (Cancer pagurus)	0.060 ± 0.009	26 ± 3
King crab, white meat (Paralithodes camschaticus)	0.005 ± 0.001	26 ± 3
Norway lobster (Nephrops norvegicus)	0.020 ± 0.003	21 ± 3
Shrimp (Pandalus borealis)	Crustaceans	3.8 ± 0.5
Shrimp (Pandalus borealis)	Clustaceans	60 ± 8
Shrimp (Pandalus borealis)	& bivalves	67 ± 8
Horse mussel (Modilous modiolus)		3.4 ± 0.4
Scallop muscle (Pecten maximus)	0.008 ± 0.001	3.1 ± 0.3
Oyster (Ostrea edulis)	0.014 ± 0.002	1.8 ± 0.2
Mink whale (Balaenoptera Acutorostrata)	< 0.0006	0.61 ± 0.08
Harp seal (Pagophilus groenlandicus)	< 0.0006	0.9 ± 0.1
Hooded seal (Cystophora cristata)	< 0.0006	0.22 ± 0.03


PK_a for different Arsenic compounds

Species	pKa - values	pH?	1	2	3	4	5	6	7	8	9	10	11	12	13
As(III)	9.2		H ₂ AsO ₃ H ₂ AsO						•O ₃ -						
As(V)	2.3/6.7/11.6	H ₃ AsO ₄			$\mathbf{H}_{2^{i}}$	H ₂ AsO ₄			HAS	HAsO ₄ ²⁻			D ₄ ³⁻		
MA	3.6/8.2		CH ₃ AsO(OH) ₂			CH ₃ A	\sO 2(0)H) ⁻ CH ₃ AsO ₃ -) ₃ -				
DMA	1.3/6.3	(CH ₃) ₂ As ⁺ (OH) ₂ (CH ₃) ₂			AsO(OH)					(CH ₃) ₂ AsO ₂ -					
DMAA	?	(CH ₃) ₂ AsOCH ₂ COOH ₂ ⁺ ? (CH ₃) ₂ AsOCH ₂ COOH ? (CH ₃) ₂ AsOCH ₂ COO ⁻													
AB	2.2	(CH ₃) ₃ As ⁺ CH ₂ CO ₂ -					(CH ₃) ₃ As ⁺ CH ₂ CO ₂ ⁻								
TMAO	3.6	(CH ₃) ₃ AsOH ⁺				(CH ₃) ₃ AsO									
DMAE	?	(CH ₃) ₂ AsOCH ₂ CH ₂ OH ₂ ⁺ ? (CH ₃) ₂ AsOCH ₂ CH ₂ OH													
AC	none	(CH ₃) ₃ As ⁺ CH ₂ CH ₂ OH													
TETRA	none	(CH ₂) ₄ As ⁺													

The charge of the arsenic compound depends on pH and inorganic arsenic should be separated by ainionic chromatography

Reference method HPLC-ICPMS

Jens et al. 2005

Determination of AS by SPE-HGAAS

Microwave assisted acidic/H₂O₂ hydrolysis:

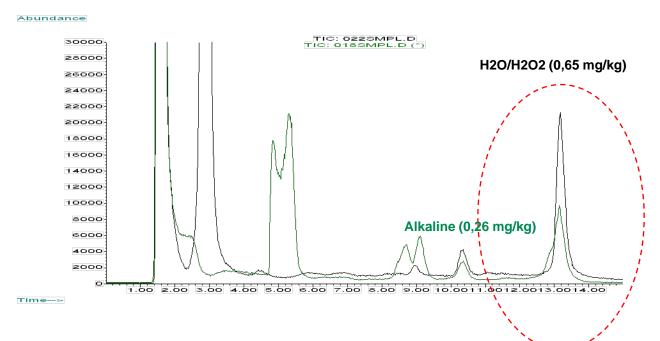
Freeze drying of sample (Addition of solvent)

Microwave treatment 20 min, 90°C

I: Solubilisation of sample matrix

II: Conversion of As(III) to As(V) by H_2O_2

III: Time/temperature may be reduced


Ajust pH of sample to pH 6 in order to obtain maximum retention on SPE column

Extraction of inorganic arsenic

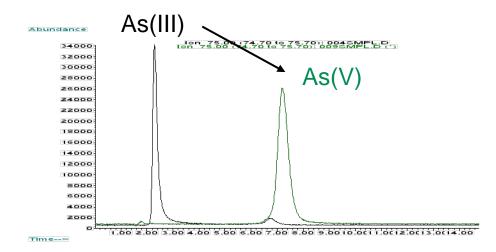
Inorganic arsenic by anion exchange HPLC-ICPMS

First approach: Alkaline extraction and µ-waves

- not compatible with SPE!!!!!!!!!
- and apparently not the most efficient !!!

New approach – DIFFERENT SOLVENT 0,07 M HCI/10 % H_2O_2

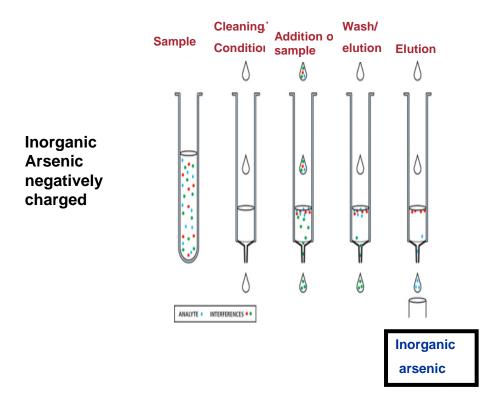
- extraction and oxidation of As(III) to As(V) (=total iAs)
- more compatible with SPE


FREEZE drying a necessary step not wet sample when operating with water

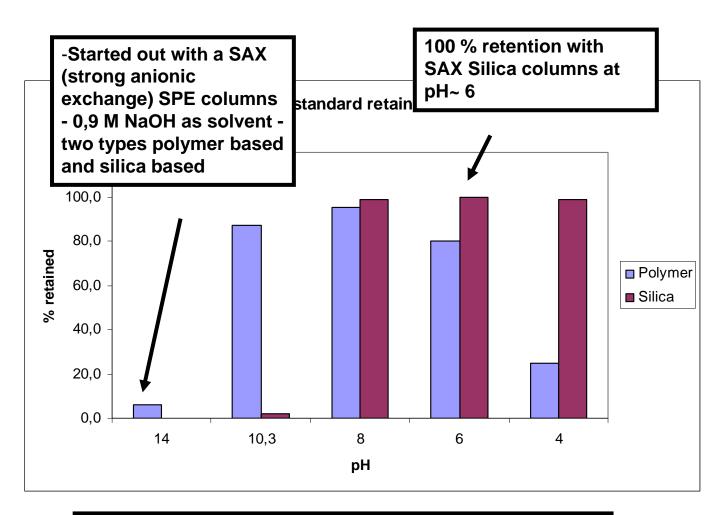
Solvent to extraction of inorganic arsenic

Ensure: no conversion of other organic Arsenic compounds is converted to iAs

Recovery of spiked As(III)


Quantitative conversion of As(III) to As(V) by H_2O_2

DTU


SOLID PHASE EXTRACTION (SPE)

SAX (strong anionic exchange)

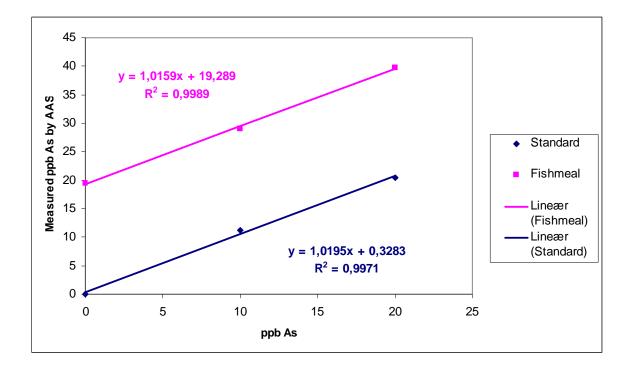
- -Cleaning with 2 mL methanol
- -Conditioning with 2 mL solvent
- -4 mL sample (diluted 1:1)
- -3 mL elution with 1 M Acetic acid
- -1 mL elution with 1 M HCl
- -Matrix matched standard curves

Solid phase extraction (SPE): Silica versus polymer

Polymer column only about 80 % retention

Measurement on a ICE 3300 from Thermo Scientific

Pre-reduction of samples

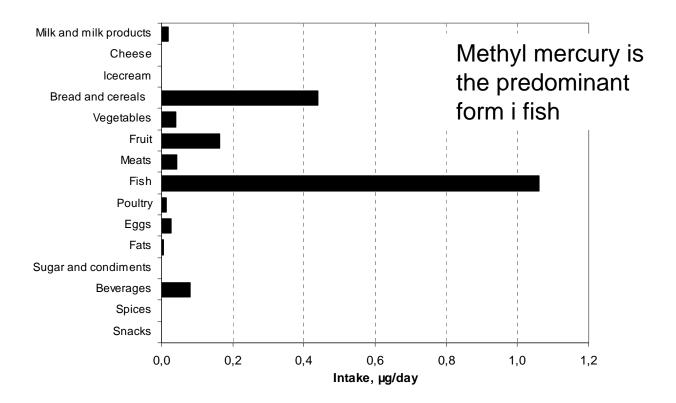

- Samples diluted 1:5 with 10 % HCL containing 0.5 % KI and 0.5 % Ascorbic acid
- After mixing left for 1 hour
- Diluted up to 1:10 with 10 % HCl
- After mixing left for one hour before measurement
- (total dilution of 1:10) of the sample and sample matrix)

Anti-foaming agent

- Foaming in samples
- Other method in the literature diluted 1:25
- Further dilution not a possible due to sensitivity of the method
- Silicone anti-foaming agent added to the samples solved the problem
- 0.05 % in the samples

STANDARD CURVES Fishmeal (spiked)

AAS compared to ICP-MS


	AAS (ppm)	ICP (ppm)					
Tort-2 (Lobster hepatopancreas)	0,94	0,95					
Blue mussel	0,38	0,37					
Ris	1,07	1,29					
Reje m skald	0,22	0,20					

-test of several different marine matrices

-in-house validated this Fall

-collaborative trial with 5-6 laboratories participation early 2010

Intake of mercury from various food

A MAE-SPE-HG-AAS method to detection of methyl mercury is to be developed

Some balanced views on seafood consumption: Denmark: Danish Food Administration (Fødevarestyrelsen): Helhedssyn på fisk og fiskevarer (2003)

Free download from www.fvst.dk

DTU

Thanks for your attention!!!

"Here's a dish I used to cook for my late husband. If you want to try it just follow the recipe, but ignore the part where it mentions a pinch of arsenic."

