Work package 3 - Heavy metals

WP-leader: Jens J. Sloth (DTU Food) WP deputy: Matti Karp (TUT)

CON*ff*IDENCE Open Day Noordwijkerhout 27. January 2010

www.conffidence.eu

WP3 – partners

Current situation in EU legislation

WP3 – trace element speciation

SPECIATION IN BIRDS

The analytical speciation workhorse – HPLC-ICPMS

WP3 – outline - analytes

Arsenic

- inorganic As (iAs) is the toxic form of As speciation
- feed MLs for total As no regulation for food
- lack of specific data on iAs in feed/food
- expectation: low iAs levels

> Mercury

- methylmercury (MeHg) more toxic than iHg speciation
- regulation on total Hg only
- expectation: MeHg is the major Hg form

WP3 – outline – sample types

Focus on marine feed and seafood Seafood is the main dietary source of arsenic and mercury

EFSA, Opinion on arsenic in food, 2009.

WP3 – outline – sample types

WP3 – objectives and tasks

MAE-SPE-HG-AAS

- simple and inexpensive speciation alternative

Cytosensor

- luminiscent recombinant bacterial cell sensor

Activities

- Method development
- Validation (in-house and collaborative trial)
- Survey data collection
- Input to risk-benefit analysis

Principle of the luminescence-based sensor strain

specific detection of environmental factors – e.g inorganic arsenic

"Components" of the metalsensor cell

- E.coli bacterial bioluminescent proteins are encoded by the *luxCDABE* genes
 - The activity of the genes is controlled by a promoter element
- The promoter is specific to a certain analyte (inorganic arsenic)
 - The presence of inorganic arsenic triggers the activation of the bioluminescent genes
 - → Production of **bioluminescent proteins**
- ✓ Emission of visible light at 490 nm

Recent results with biosensors

Sample extraction methods for fish samples:

- HNO3 -extraction
 - O/N incubation of fish sample+ nitric acid (+55 ℃, 16 h)
 - Centrifugation (13000rpm, 5 min)
 - Sample pH adjustment at 7 with phosphate buffer
 - Bioreporter assay for iAs detection
- Ultrasonic water -extraction
 - Different amounts of fish sample extracted with MQ-water (10 ml)
 - Extraction performed in an ultrasonic bath (+50 ℃, 2 h)
 - Centrifugation (3000rpm, 15 min)
 - Bioreporter assay for iAs detection

 \rightarrow Promising results obtained with water extraction method.

Water extraction with ultrasonic bath

- Inorganic As standard curve in LB (control)
- > The detection limit is shown with the arrow

Standard curve with 100 mg unspiked fish meat extracted with H_20^a .

30 nM	100nM	300nM	1µM	ЗμМ	10µM	30µM	100µM
0,85	0,84	0,90	0,91	0,90	0,89	0,89	0,89
0,95	0,96	1,16	1,79	3,40	7,42	11,25	7,85
0,95	1,09	1,58	3,16	8,11	19,73	33,46	44,81
1,06	1,36	2,14	4,90	13,19	31,39	53,19	82,30

30 nM	100nM	300nM	1µM	ЗµМ	10µM	30µM	100µM
0,93	0,92	0,93	0,96	0,95	0,97	0,99	1,06
1,02	1,01	1,06	1,24	1,66	3,47	7,76	13,88
1,09	1,09	1,20	1,72	3,05	9,04	21,76	51,62
1,10	1,11	1,36	2,29	4,97	15,87	34,43	71,27

^a fish was cultivated without spiking, for the measurement freeze-dried fish was spiked with same concentrations of arsenic as shown in LB experiment.

Water extraction with ultrasonic bath

> Spiked fish meat extracted with water in an ultrasonic bath $(+50^{\circ}C, 2h)$

EFSA opinion on arsenic in food (issued 23/10-09)

- DATA: >100.000 occurrence data; 98% on total arsenic
- Conclusion: Old PTWI value (WHO, 1988) not appropriate any more
- > NEW!: BMDL₀₁ = $0.3 8 \mu g/kg$ bw per day for inorganic arsenic
- => EU dietary exposures within this range
- > => Risk to some consumers cannot be excluded
- "…there is a need to produce <u>speciation data</u> for different food commodities to support dietary exposure assessment…"
- "There is a need for robust validated analytical methods for <u>inorganic</u> arsenic in a range of food items"

Thanks for your attention!

12.00

Further information:

2.00

4.00

Speciation – chemical analysis: jjsl@food.dtu.dk (Jens J. Sloth) Speciation – biosensor approach: matti.karp@tut.fi (Matti Karp)

Various info on speciation: EVISA homepage; www.speciation.net

8.00

6.00

evisa.

10.00