DESI-MS in food contaminants control

Michel Nielen, Hans Mol

Outline

Introduction Principle Experimental parameters Instrumentation Food contaminant applications Summary/outlook

DESI-MS

Desorption electrospray ionization First ambient MS technique invented by Graham Cooks from Purdue University, USA

Mass spectrometry

Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization

Zoltán Takáts, Justin M. Wiseman, Bogdan Gologan, R. Graham Cooks*

Science 306, 471 (2004)

Ambient MS techniques

Venter, Nefliu, Cooks, Trends in Anal. Chem. 27 (2008) 284-290

Ambient MS

Table 1 Chronology and perceived impact of developments in ambient ionization MS Weston, Analyst, 2010, 135, 661-668				
Method name	Acronym or abbreviation	Year of introduction	Research papers (papers/year) ^a	
Desorption electrospray ionization	DESI	2004	188 (31)	
Surface sampling probe	SSP20	2004	5 (1)	
Direct analysis in real time	DART ²	2005	65 (16)	
Atmospheric solids analysis probe	ASAP ²¹	2005	7 (1.4)	
Electrospray laser desorption ionization	ELDI ²²	2005	6 (1.5)	
Fused droplet electrospray ionization	FD-ESI ²³	2005	2 (0.5)	
Direct atmospheric pressure chemical ionization	DAPCI ²⁴	2005	89 (22)	
Matrix-assisted laser desorption electrospray ionization	MALDESI ²⁸	2006	8 (2.7)	
Jet desorption electrospray ionization	JeDI ²⁶	2006	1 (0.3)	
Extractive electrospray sonization	EESI27	2006	22 (7)	
Desorption sonic spray ionization	DeSSI ²⁸	2006	2 (0.7)	
Atmospheric pressure thermal desorption ionization	APTDI ²⁹	2006	3 (1)	
Helium atmospheric pressure glow discharge ionization	HAPGDI ³⁰	2006	1 (0.5)	
Plasma-assisted desorption ionization	PADI ³¹	2007	1 (0.5)	
Dielectric barrier desorption ionization	DBDI ¹²	2007	2 (1)	
Neutral desorption extractive electrospray ionization	ND-EESI ³³	2007	5 (2.5)	
Laser diode thermal desorption	LDTD ³⁴	2007	1 (0.5)	
Laser ablation electrospray ionization	LAESI35	2007	1 (0.5)	
Desorption atmospheric pressure photo-ionization	DAPP1 ³⁶	2007	2 (1)	
Infra red laser ablation electrospray ionization	IR-LAESI"	2008	7 (3.5)	
Flowing atmospheric-pressure afterglow	FAPA ³⁸	2008	2 (2)	
Easy ambient sonic spray ionization	EASI ³⁹	2008	5 (5)	
Remote analyte sampling transport and ionization relay	RASTIR ⁴⁰	2008	1 (1)	
Laser ablation flowing atmospheric-pressure afterglow	LA-FAPA ⁴¹	2008	5 (5)	
Low temperature plasma	LTP ⁴²	2008	7 (7)	
Desorption electrospray metastable-induced ionization	DEMI ⁴³	2009	1 ()	
Liquid micro-junction surface sampling probe/electrospray ionization	LMJ-SSP/ESI44	2009	3 ()	
Surface activated chemical ionization	SACI45	2009	1 ()	
Single particle aerosol mass spectrometry	SPAMS ⁴⁶	2009	1 (-)	

DESI: principle and processes

From surface deposit to ion:

- 1. Formation of charged primary droplets by electrospray source
- 2. Flight of droplets to surface, wetting of surface, dissolvation
- 3. Collision of charged droplets with surface => smaller droplets
- 4. Takeoff of secondary droplets, ablated material, free ions
- 5. Transport through atm. pressure interface
- 6. Shrinking of droplets, electrostatic fission => free ions

Formation of secondary droplets

Costa, Cooks, Chemical Physics Letters 464 (2008) 1–8

RIKILT

WAGENINGENUR

Experimental parameters

- Solvent
- Solvent flow
- Gas flow
- Spray angle
- Capillary voltage
- Distance to sample surface
- Angle ion collection MS
- Sample surface
- Distance to MS inlet
- MS parameters (incl. source temp)

Venter et al, Anal. Chem. 2006, 78, 8549-8555

Solvent and spray

Dissolution of analyte in microdroplets / solvent film Ionization; similar to LC-ESI-MS solvents \Rightarrow MeOH or ACN with water/acid Option to add reagents (reactive DESI) Flow rate: 1-5 µl/min Nebulizer gas: 8-40 L nitrogen/min Spray droplets: \leq 10 µm (2-4), v \geq 100 m/s (120)

Reactive DESI

Ifa et al, Analyst, 2010, 135, 669–681

Spray voltage (kV) Higher V => more charges on droplet surface

Levels off around 5 kV (=> default)

Nebulizer gas pressure (psi)

Solvent flow rate µl/min

Geometry

Standard configuration DESI sources

Green et al, Anal. Chem. 2009, 81, 2286-2293

$$\label{eq:alpha} \begin{split} \alpha &= 25\text{-}80^\circ\\ \beta &= \text{-}5\text{-}10^\circ\\ \text{Spray tip to surface} &= 1\text{-}10 \text{ mm}\\ \text{Surface to MS inlet} &= 1\text{-}5 \text{ mm} \end{split}$$

Alternative configurations

Configuration	Incident/Collection angle	Mean Rhodamine intensity*	
	90°/90°	1546±630	
	90°/10°	739±250	
-	50°/10°	1375±510	
	45°/45°	2974±1040	
	50°/10°(Open)	1490 ± 525	

Venter et al, Anal. Chem. 2007, 79, 6398

Geometry independent configurations

Sample surface (substrate)

Wettability: solvent formation/dissolution Electroconductivity: more charge maintained by substrate, more charge in sec. droplets

Surfaces:

Sample itself

Pear leaf

2.5 mm

Substrates for liquids/extracts:

- Glass
- PTFE (teflon)
- PMMA (polymethylmethacrylate)
- Filter paper
- TLC plates

mm

In principle.....you can misuse a Z-source....

Paracetamol

lon source assembly

Mass spectrometer

Top view DESI source assembly

DESI-MS/MS (LXQ, linear ion trap)

DESI, MS inlet (sniffers)

Standard LXQ MS inlet capillary

Extended, bended, enlarged opening

Front view DESI

DESI applications

DESI and related ESI approaches by far most utilized ambient MS technique*

Rapid analysis pharmaceutical product Explosives **Biological imaging** Forensic imaging of inks Illegal and counterfeit drugs Drug metabolites in biological matrices Chemical warfare agents Textiles Peptides and proteins Proteomics **Metabolomics** Plants / natural products **Food contaminants**

.

*Weston, Analyst 135 (2010) 661-668

DESI in food contaminants control

<u>Consideration MRL verification</u> \Rightarrow MRLs expressed in mg/kg whole product \Rightarrow requirements minimum sample size

<u>Test MRL compliance:</u> Homogenisation (+extraction) => deposit on spots/slides (semi) Quantitative analysis

In laboratory DESI for fast high throughput analysis of <u>extracts</u>

<u>Test presence (screening, yes/no)</u> Direct detection from sample surface or cross-sections of tissues No sample preparation Qualitative

In laboratory

Fast high throughput analysis of sample Distribution on surface/cross sections

In-field

DESI as on-site detection tool Food forensics crops, swops, clothing, containers, syringes

Feasibility Dithiocarbamates by DESI

Fungicides, widely used, high application rates Non-systemic (residues on surface only)

DMDC = bis(dimethyldithiocarbamate)

EBDC = ethylenebis(dithiocarbamate)

PBDC = propylenebis(dithiocarbamate)

Dithiocarbamates

Solubility issues

Stability issues

Current method: hydrolysis to CS₂

Legislation (396/2005): CS_2 (sum) but specific MRL for 3 DTCs

Groups and examples of individual products to which the MRLs apply (a)	Dithiocarbamates (dithiocarbamates expressed as CS2, including maneb, mancozeb, metiram, propineb, thiram and ziram)	Propineb (expressed as propilendiamine)	Thiram (expressed as thiram)	Ziram
Apples	5	0,3	5	0,1*
Pears	5	0,3	5	1
Strawberries	10 (ft)	0,05*	10	0,1*
Lettuce	5	0,05*	2	0,1*

MS/MS optimization (thiram)

DESI parameters

Nitrogen sheath gas Incident angle Spray tip-to-surface distance Surface to MS-inlet distance Scattering angle DESI spray

Flow Scanning of the surface Heated capillary MS (LXQ) Substrate

120 psi (9 bar) 55° 5 mm 1 mm ca. 10° to surface MeOH/water 1:1 + 10 mM NH4For. + 0.1% FA 5 µl/min 250 µm/sec 50°C PTFE printed on glass

Thiram stnd solutions (teflon spots on glass)

WAGENINGENUR

Quantitative analysis?

Cal Curve Thiram 0-1 mg/kg Average n=3 0.16 y = 0.1428x - 0.0057 [◆] 0.14 $R^2 = 0.9761$ 0.12 0.1 0.08 0.06 0.04 0.02 mg/L ~ mg/kg \rightarrow 0 0.2 0.4 0.6 0.8 1.2 0 1

Direct analysis from sample surface

Alternative to direct analysis

Homogenization (plant juices); simple extraction procedure followed by rapid DESI detection

Options extraction:

Systemic: QuEChERS or other

Non-systemic: solvent rinse of intact product

QuEChERS: 1. Initial Extraction Step

Weigh 10 g Sample

Add 10 mL MeCN

Shake Intensively

for 1 min

Slides from Anastassiades et al, (JAOAC, 2003)

2. Extraction/Partitioning Step

(Pre-)Weigh 4 g MgSO₄ + 1 g NaCl

Add to the Tube

Shake Intensively

for 1 min

Slides from Anastassiades et al, (JAOAC, 2003)

3. Addition of ISTD and Centrifugation

Add ISTD

Shake for 30 s

Centrifuge (ca. 5 min)

Separated Raw Extract

Slides from Anastassiades et al, (JAOAC, 2003)

RIKILT SI

4. Dispersive SPE Step

(Pre-) Weigh MgSO₄ and PSA

Add Extract to Tube and Shake ca. 30 s

Centrifuge (ca. 2 min)

Cleaned up Extract

Slides from Anastassiades et al, (JAOAC, 2003)

Surface extraction

Comparison of extraction methods (pear)

Spike experiments

Vegetables/fruits spiked with thiram std and commercial PPP (TMTD)

Results

<u>Results</u>

<u>Results</u>

Recovery and repeatability (matrix-matched calibration) Pears spiked (10 mg/kg)

	thiram	ISTD	ratio
1	3333	5568	0.60
2	9398	7561	1.24
3	6124	5759	1.06
4	6552	6623	0.99
5	3414	5054	0.68
6	5117	5490	0.93
average	5656	6009	0.92
RSD%	40	15	26
av. Rec.%			85

Strobilurin fungicides (Biocop)

Schurek et al, Anal. Chem. 80 (2008) 9567-9575

Azoxystrobin MS/MS on m/z 404

Strobilurins: Reactive DESI

strobilurin	DESI from PTFE	Reactive DESI silver cationization
Metominostrobin "Z"	+	+
Metominostrobin "E"	+	+
Fenamidone	+	+/-
Kresoxim-methyl	-	+
Dimoxystrobin	+/-	+
Epoxiconazole	+	+/-
Famoxadone	-	+/-
Pyraclostrobin	-	+
Orysastrobin	-	+
Azoxystrobin	+	+
Trifloxystrobin	-	+
Fluacrypyrim	-	+
Fluoxastrobin	+	+
Picoxystrobin	+	+

DESI: ACN/water/FA (80:20:0.1) reactive DESI: ACN/water (75:25) + 5 mg/ml AgCF3COOH flow 2.5 ul.min-1

Optimization of spray solvent

	Limit of detection / ng ml ⁻¹					
Compound	MeOH: H ₂ O 50:50 ^a	MeOH: H ₂ O 80:20 ^a	A cN: H ₂ O 50:50 ^a	AcN: H ₂ O 80:20 ^a	AcN: H ₂ O 95:5 ^a	AcN: H ₂ O 80:20 (1% FA ^b) ^a
Ametryn	30	10	5	2.5	5	2.5
Amitraz	65	150	30	30	30	30
Atrazine	120	200	100	80	35	35
Azoxystrobin	16.5	35	25	25	65	16.5
Bitertanol	1000	400	250	300	500	250
Buprofezin	35	65	10	35	100	10
Imazalil	16.5	35	20	10	25	10
Imazalil metabolite	330	500	16.5	16.5	35	16.5
Isofenphos- methy1	200	200	130	35	200	35
Malathion	200	330	330	35	100	35
Nitenpyram	500	2000	50	100	100	50
Prochloraz	200	1650	150	150	250	150
Spinosad	30	35	130	35	330	30
Terbuthylazine	150	250	130	130	65	65
Thiabendazole	165	400	330	100	50	50
Thiacloprid	300	1000	330	225	300	225
All the experiments were performed using 3µl of solvent standards deposited on PTFE surfaces : FA: formic acid						

Garía-Reyes et al, Anal. Chem. 81 (2009) 820-829

DESI parameters garcia et al

Nitrogen sheath gas Incident angle Spray tip-to-surface distance Surface to MS-inlet distance Scattering angle **DESI** spray Flow Scanning of the surface Heated capillary MS (LTQ) **Substrate**

150 psi (10 bar) 55° 5 mm 1.5 mm ca. 10° to surface acetonitrile/water 8:2+1% FA 5 µl/min ? 200°C PTFE

	limits of detection (LOD)					
compound		LOD (µg	L ⁻¹)	LOD ($\mu g \ kg^{-1}$)		
		DESI-MS (optimized solvent) ^c	DESI-MS/MS (solvent) ^d	DESI-MS/MS (tomato) ^e	DESI-MS/MS (orange) ^f	
ametryn		2.7	0.1	1.0	1.5	
amitraz		30	3.0	60	80	
atrazine		30	0.16	1.5	1.5	
azoxystrobin		15	2.0	18	18	
bitertanol		265	6.5	60	80	
buprofezin		10	2.0	80	80	
imazalil		10	0.5	5.0	5.0	
imazalil metabolite		17	5.0	90	90	
isofenphos-methyl		35	3.5	80	60	
malathion		35	3.0	30	40	
nitenpyram		50	3.5	70	70	
prochloraz		150	0.7	10	10	
spinosad		30	8.0	80	80	
terbuthylazine		65	0.16	2.0	2.0	
thiabendazole		50	3.3	45	50	
thiacloprid		225	5.0	50	60	

QuEChERS w/o buffer + PSA clean up; extract diluted 1:3 in acetonitrile

Garía-Reyes et al, Anal. Chem. 81 (2009) 820-829

Direct detection of imazalil from lemon peel

Table 4. Quantitation of Imazalil Residues in Citrus Fruits by DESI-MS/MS and Comparison with the LC-MS Reference Method

no.		imazalil concentration ($\mu g g^{-1}$)				
	sample	LC-MS ($\mu g g^{-1}$)	DESI-MS ($\mu g g^{-1}$)	$\begin{array}{c} \text{RSD} \\ \text{(\%)} \ (n = 5) \end{array}$		
1	orange	0.19	0.16	12.8		
2	lemon	0.35	0.38	11.2		
3	lemon	0.44	0.48	9.6		
4	orange	0.67	0.58	8.1		
5	grapefruit	0.33	0.30	12.1		
6	orange	0.15	0.12	14.5		

using deuterated imazalil as ISTD

Reactive DESI analysis on steroids

Steroids in urine SPME enrichment Direct detection from fiber

Spray 3µl/min: MeOH/water 1/1 0.05% HAc, 5% hydroxylamine

Steroid cocktail

Steroid cocktail

Methylboldenone MS/MS m/z 301

Fluoxymesterone MS/MS on m/z 337

Direct detection of IA captured fluoroquinolone

SPR biosensor chip Immunoaffinity bound enrofloxacin

Alkaloids on Senecio jacobaea L. Stinking Willie

Senecionine N-oxide

Unable to passively permeate membranes

Nontoxic

Metabolically safe

Senecionine

Able to passively permeate membranes

Toxic after bioactivation

Metabolically unsafe

Alkaloids on Senecio jacobaea L. Stinking Willie

071003_hho__29 #16 RT: 0.38 AV: 1 NL: 6.49E2

Summary

DESI a useful option for food contaminant analysis/control Lots of research in progress, many papers appearing Like other ambient techniques, pro's and con's

Features:

- Direct detection from substrates, TLC, sensor chips, sample surface
- Reactive DESI
- Spatial resolution
- Rapid detection/high throughput of sample(extracts)
- Quantitative determination possible with use of internal standard

Limitations:

- Sensitivity (matrix suppression)
- Reproducibility
- MSⁿ or high res required
- residues => targeted detection

Outlook

In lab analysis:

- Further improvement robustness
- Rapid straightforward and selective extraction
- More applications
- Combi sources to extent scope

ASAP+DESI (Lloyd et al, Anal. Chem. 81, 2009, 9158)

Towards in-field:

- optimization of nongeometry dependent DESI source
- coupling of DESI with portable MS instruments

-

Too much, too little, too fast, not clear?

DESORPTION ELECTROSPRAY IONIZATION MASS SPECTROMETRY IN

THE ANALYSIS OF CHEMICAL FOOD CONTAMINANTS

M.W.F. Nielen^{1,2*}, H. Hooijerink¹, P. Zomer¹, J.G.J. Mol¹,

- ¹, RIKILT Institute of Food Safety, P.O. Box 230, 6700 AE Wageningen, The Netherlands
- ², Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB

Wageningen, The Netherlands. E-mail: michel.nielen@wur.nl

Submitted to Trends in Analytical Chemistry (March 2010)

Thank you for your attention

This training is supported by the European Commission funded Integrated Projects:

FOOD-CT-2004-06988 "BIOCOP (New Technologies to Screen Multiple Chemical Contaminants in Foods)" coordinated by Queen's University (Belfast, UK)

FP7-211326-CP "CONFFIDENCE (Contaminants in Food and Feed: Inexpensive Detection for Control of Exposure)" coordinated by RIKILT – Institute of Food Safety (Wageningen, The Netherlands)

© Wageningen UR

Venter, Nefliu, Cooks, Trends in Anal. Chem. 27 (2008) 284-290

Fig. 4 Two simplified geometries for DESI. (A) and (B) Reflection mode (geometry independent) GI-DESI and its use in high-throughput analysis of metabolites in a bacterial matrix on a 96-well plate.²⁴ (C) Transmission mode (TM-DESI).²⁷

This journal is © The Royal Society of Chemistry 2010

Ifa et al, Analyst 135 (2010) 669-681

