Cluster workshop WP 2a & WP 2b

Coccidiostats & Antibiotics in Food and Feed

CONffIDENCE Open day (following Euroresidues VII) Egmond aan Zee, 16 May 2012

What is CONffIDENCE?

>A FP7 European project: http://www.conffidence.eu

CONtaminants in Food and Feed: Inexpensive **DEtectioN** for Control of Exposure

Grant agreement no.: 211326 – CP Collaborative Project

Project coordinator: Dr Jacob de Jong, RIKILT, The Netherlands

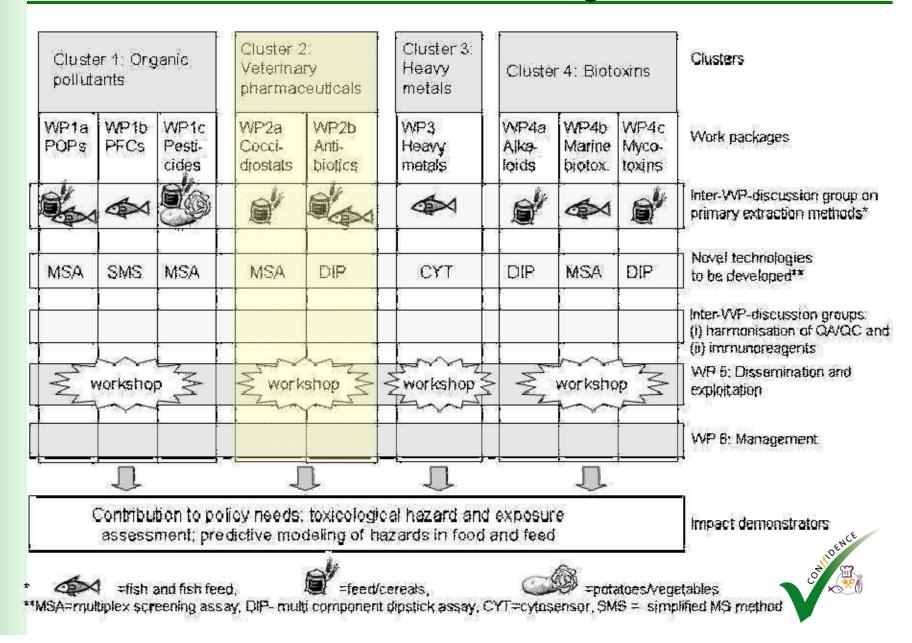
Start: May 2008 – Duration: 56 months

Consortium: 17 partners from 10 countries, representing 9 research institutes, 5 universities, 2 large food and feed industries and 1 SME

Why has CONffIDENCE been set up?

- >RASFF alerts: monitoring of chemical contaminants in food and feed very relevant in European food safety.
- Consumers placed chemical contaminants on top of the "worry-scale" of food-related risks.
- ➤ Often expensive instrumental single-analyte methods are being applied by regulatory and industrial laboratories.
- wrgent need for replacement by <u>validated</u> screening tools which are <u>simple</u>, <u>inexpensive</u> and <u>rapid</u>, but also show <u>multiplex</u> capability by detecting as many contaminants in parallel as possible.

CONffIDENCE overall objectives


- to provide long-term solutions to the monitoring of
 - ✓ persistent organic pollutants, perfluorinated compounds, pesticides
 - ✓ veterinary pharmaceuticals (coccidiostats, antibiotics)
 - ✓ heavy metals
 - √ biotoxins (alkaloids, marine toxins, mycotoxins)

in high-risk products such as fish and fish feed, cereal-based food/feed and vegetables.

CONffIDENCE overall objectives

- ➤ balanced mix of **novel multiplex technologies** including dipsticks, flow cytometry with functionalised beads, optical and electrochemical biosensors, cytosensors and metabolomics-like comprehensive profiling.
- Dissemination to scientists and to relevant stakeholders

How is CONffIDENCE organised?

WELCOME TO THE CLUSTER 2

WORKSHOP

WP 2a: Coccidiostats

Project leader: Dr Ursula Vincent (EC-JRC-IRMM, BE)

Deputy project leader: Dr Philippe Delahaut (CER groupe, BE)

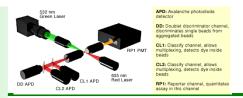
WP 2b: Antibiotics

Project leader: (Dr Sara Stead) – Mr Matthew Sharman (FERA, UK)

Deputy project leader: Dr Benoît Granier (Unisensor, BE)

CLUSTER 2 – DoW

Rapid Methods for screening


WP 2a

- ➤ Analytes: lasalocid A, monensin, salinomycin, narasin, and nicarbazin
- >Matrices: eggs, laying hens feed
- ➤ Technique: Flow cytometry based immunoassay
- **≻**Multiplex
- **➤ Development optimisation**
- **➤** Single-laboratory validation
- **≻Inter-laboratory comparison**

WP 2b

- ➤ Analytes: malachite green, tetracyclines, tylosin, chloramphenicol, quinolone and sulphonamide antibiotics
- ➤ Matrices: fish, feeds, urine, processed meat and honey
- > Technique: Dipsticks
- **>** Single-component & Multiplex
- **➤ Development optimisation**
- **➤ Single-laboratory validation**
- **≻Inter-laboratory comparison**

Objectives

WP 2a

1. Validated flow cytometry based multiplex immunoassay for residues of lasalocid A, monensin, salinomycin, narasin and nicarbazin in feed and eggs

Policy support:

- Screening method
 addressing the needs of EC
 and EFSA to establish
 maximum tolerable levels in
 non target feeds
 Cross-contamination in non targeted feed (laying hens
 feed)
- 2. Carry-over study of lasalocid from laying hens feed to eggs aiming at contribution to a

WP 2b

Development, validation and impact demonstration of singlecomponent and multiplex dipsticks to detect malachite green, tetracyclines, tylosin, chloramphenicol, quinolone and sulfonamide antibiotics in a range of matrices including fish, feeds, urine, processed meat and honey"

Scope - Need of sensitive methods!

WP 2a

	LOD (DoW)		Max. Levels	
	Egg	Feed	Egg	Feed
	(µg kg ⁻¹)	(mg kg ⁻¹)	(µg kg ⁻¹)	(mg kg ⁻¹)
Monensin	75	1.25	2*	1.25
Salinomycin	75	0.7	3	0.70
Narasin	75	0.7	2	0.70
Lasalocid	75	1.25	150	1.25
Diclazuril	1	-	2	0.01
Nicarbazin	100	0.5	100	1.25

^{*} in other food stuff of animal origin

Maximum content of coccidiostats in eggs (ML's) (µg kg⁻¹ wet weight) Maximum levels of unavoidable carry-over of coccidiostats in non-target feed (mg of active substance/kg feed)

Scope - Need of sensitive methods!

Status WP 2a

- PAII immunochemical reagents (antibodies and conjugates) produced and characterized
- All test materials (eggs & feed) produced homogeneity OK
- ➤ Protocol and prototype test of the multiplex assay for coccidiostats in buffer Done
- ➤ Protocol and prototype test kit for coccidiostats in feed and eggs including simplified sample preparation procedures Done
- **≻Single-laboratory validation Performed**
- ➤ Performance characteristics of the new method vs. existing ELISA, HPLC and LC-MS/MS methods Performed
- **≻Small-scale** interlab study Launched
- ➤ Carry-over study of lasalocid from laying hens feed to eggs using the FCIA Started

Status WP 2b

- > All immunochemical reagents (antibodies and conjugates) produced and characterized
- ➤ All test materials produced homogeneity OK
- > Development / optimisation of (multiplex) dipsticks Done
- >Assay optimisation and comparison to current echnology
- Performed
- ➤ Single-laboratory validation (2002/657/EC) Performed
- ➢Interlab study Done (data treatment on-going)
- Figure 2 Impact demonstrators: regional survey of malachite green/LMG in salmon and antibiotics in honey and contribution to validation of a predictive model for the fate of the tetracycline hazard from farm to fork including the effect of food processing and on-farm demonstration − Started

CSIC

Thanks for your attention

>http://www.conffidence.eu

