INSTITUTE OF CHEMICAL TECHNOLOGY PRAGUE

HIGH-THROUGHPUT GC-MS/MS ANALYSIS OF BFRs (INCLUDING EMERGING COMPOUNDS) IN FISH/SEAFOOD

KAMILA KALACHOVA, JANA PULKRABOVA, TOMAS CAJKA, JANA HAJSLOVA

Department of food chemistry and analysis

5th International Symposium on RECENT ADVANCES IN FOOD ANALYSIS November 1–4, 2011 Prague, Czech Republic

CON*ff*IDENCE: CONtaminants in Food and Feed: Inexpensive DEtectioN for Control of Exposure.

Cluste polluta	er 1: Org ants	anic	Cluster 2 Veterinar pharmac	2: 'Y euticals	Cluste Heavy metals	er 3: /	Cluster	r 4: Bioto	xins
WP1a POPs	WP1b PFCs	WP1c Pesti- cides	WP2a Cocci- diostats	WP2b Anti- biotics	WP3 Heavy metals		WP4a Alka- loids	WP4b Marine biotox.	WP4c Myco- toxins
No.		Š@	ď		4	٩	ď		1

PRAGUE http://www.conffidence.eu/

CON*ff***IDENCE** – Project objectives

- To develop a simplified sample preparation strategy for the simultaneous determination of wide range of contaminants in food and feed focused on fish and cereal based baby food.
- To implement a GC×GC–TOFMS for the determination of wide range of contaminants in food and feed.
 - Fasten and simplified sample preparation method
 - Decrease the consumption of chlorinated solvents
 - Decrease the financial cost of analysis
 - Obtain high chromatographic resolution and low limits of quantification (LOQ)

PRAGUE

Target analytes & Legislation

RAFA 2011

ACREDITATED SAMPLE PREPARATION

Time consuming, laborious, high consumption of chlorinated solvents....

INTEGRATED SAMPLE PREPARATION

Weight 10 g of fish tissue

Add 5 mL H₂O & 10 mL EtOAc

Shake 1 min

Clean-up

silica minicolumn

Add 2 g NaCl & 4 g MgSO₄

Shake

1 min

Take aliquot of 5 mL from organic layer

Evaporate

Evaporate and eliminate the residues under the stream of N_2

Re-dissolve in 0.5 mL of isooctane and transfer into the vial

Simplified and rapid determination of polychlorinated biphenyls, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons in fish and shrimps integrated into a single method

Kamila Kalachova, Jana Pulkrabova, Lucie Drabova, Tomas Cajka, Vladimir Kocourek, Jana Hajslova*

Institute of Chemical Technology, Prague, Faculty of Food and Biochemical Technology, Department of Food Chemistry and Analysis, Technicka 3, 166 28 Prague 6, Czech Republic

ARTICLE INFO

Article history: Received 18 July 2011 Received in revised form 13 Sentember 2011 ABSTRACT

In this study, a new rapid and flexible method for the simultaneous determination of 18 key representatives of polychlorinated biphenyls (PCBs), 7 polybrominated diphenyl ethers (PBDEs), and 32 polycyclic aromatic hydrocarbons (PAHs) in fish and shrimps by gas chromatography coupled to mass spectrometry

GC×GC–TOFMS (EI) – fish muscle tissue 🦔

Agilent 6890N Pegasus III, LECO Corp.

			<u> </u>
Analytac	Desired LOQ	Achieved LOQ	
Analytes	CONffIDENCE	GC×GC-TOFMS (8 µL)	
PBDEs	≤ 0.2 µg/kg	0.025 − 1 μg/kg**	
HBCD	≤0.2 μg/kg	1 μg/kg	
PBB 153	≤0.2 μg/kg	0.25 μg/kg	
Σ dl-PCBs	2 ng WHO-PCB-TEQ/kg	1.27 ng WHO-PCB-TEQ/kg	
B[a]P	≤2 μg/kg	0.05 μg/kg	
Other PAHs	N/A *	0.01–0.5 μg/kg	

N/A – not available

** BDE28, 47–0.025 μg/kg; BDE100–0.1 μg/kg; BDE99, 153–0.25 μg/kg; BDE154, 183–1 μg/kg.

GC–MS/MS (EI)

Agilent GC 7890A Agilent 7000B GC/MS Triple Quad

Fish muscle tissue spiked at 5 µg/kg (injected equivalent of matrix – 20 mg).

Column: Rxt-1614 (15m × 0.25mm × 0.1µm)

Injection mode: pulsed splitless (20 psi, 1.5 min) Injection temperature: 80°C (0.02 min), @ 600°C/min to 300°C(1 min), @ 100°C/min to 280°C Injection volume: 2 µL

Oven temperature: 110°C (1.5 min), @ 30°C/min to 320°C (10 min) Post run – back flush: 280°C (2 min, 50 psi) Carrier gas: helium (constant pressure)

Source temperature: 280°C Collision gas: nitrogen (1.5 mL/min)

CONFIDENCE		
$\sim \leq 0.2 \mu a/ka$	Achieved LOQ	Analytes
0	0.005 µg/kg	PBDE 28-100; PBT; PBEB; HBB; BTBPE
Could b	0.01 µg/kg	PBDE 153-183; PBB 153
, p Bl	0.05 µg/kg	PBDE 196-203
BI	0.1 µg/kg	PBDE 206-207
	0.5 µg/kg	PBDE 209
K RI	1 µg/kg	OBIND
K C	N/A *	DBDPE
· / \		

* Note: DPDPE - the MS/MS transitions were not found.

MS/MS transitions

AA + MRM (407.8000 -> 248.1000)

∧∧ + MRM (485.7000 -> 326.0000)

AA + MRM (565.7000 -> 405.8000) AA + MRM (643.4000 -> 483.8000)

/∧ + MRM (721.6000 -> 561.8000) ∧∧ + MRM (801.7000 -> 641.5000)

AA + MRM (879.8000 -> 719.6000) AA + MRM (799.4000 -> 639.5000)

AA + MRM (811.8000 -> 651.4000)

∧∧ + MRM (551.7000 -> 472.5000)

A + MRM (406.7000 -> 246.8000)

AA + MRM (499,7000 -> 484,6000) AA + MRM (852.7000 -> 771.7000)

A + MRM (356.8000 -> 277.8000)

Could be even better

BDE 206

BDE 207

BDE 209

OBIND

GC–MS/MS (EI) – validation

Procedure blank

• With each batch of six samples, the procedure blank was prepared.

Recovery (%) and repeatability RSD (%)

- Fish muscle tissue (trout and salmon 2 and 14% of fat) spiked with all target analytes at two concentration levels (n=6).
- Level 1 and 2 = 1 and 5 µg/kg

LOQ (µg/kg), linearity (R²), ...

Final independent control - trueness

PBDEs & ABFRs	GC-EI-MS/MS (2 µL)	et "Set
REC [%]	78 - 115	
RSD [%]	2 - 14	
LOQ [µg/kg]	0.005 - 1	
Linearity (R ²)	0.9925 - 0.9999	
Elifeanty (IV)	0.0020 0.0000	

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material® 1947

Lake Michigan Fish Tissue

Standard Reference Material (SRM) 1947 is a frozen fish tissue homogenate, which was prepared from fish collected from Lake Michigan, and is intended primarily for use in evaluating analytical methods for the determination of selected trace elements, methylmercury, total mercury, polychlorinated biphenyl (PCB) congeners, chlorinated

National Institute of Standards & Technology

Certificate of Analysis

Standard Reference Material® 1974b

Organics in Mussel Tissue (Mytilus edulis)

Standard Reference Material (SRM) 1974b is a frozen mussel tissue homogenate intended for use in evaluating analytical methods for the determination of selected polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyl (PCB) congeners, and chlorinated pesticides in marine bivalve mollusk tissue and similar matrices. All of the constituents for

Agilent GC 7890A Agilent 7000B GC/MS Triple Quad

Trout

GC–MS/MS (EI) – real life samples

2 · 1.75 · 1.5 ·					Fr	esh fron	wat	er fi e riv	sh - er			•			C fro	Canr om t m	ned f he C arke	ish - zec et	h -	
1.25			╞			mo		oring	3	╞	╞	>								
0.75															-					
0.5								1			E	İ.								
0	FF1	FF2	FF3	FF4	FF5	FF6	FF7	FF8	FF9	FF10	FF11	FF12	CF1	CF2	CF3	CF4	CF5	CF6	CF7	CF8

	Fish	Fat [%]	Note
	mackerel	22.7	vegetable oil
	mackerel	14.3	brine
	mackerel	13.9	brine
Conned fich	mackerel	11.5	brine
Canned lish	sardines	5.4	vegetable oil
	sardines	11.2	vegetable oil
	smoked sprats	15.9	vegetable oil
	cod liver	28.5	oil
	Crucian carp	0.3	Trmice - Bílina
	Roach	2.4	Trmice - Bílina
	Chub	5.3	Děčín
	Chub	4.3	Děčín
	Chub	2.6	Ústí nad Labem cofluence of Elbe & Bílina
Encols Sale	Bream	0.7	Obříství
Freshtish	Chub	2.4	Obříství
	Chub	1.4	Valy - Hradec Králové Elbe
	Chub	0.7	Elbe
	Bream	2.9	Debrná - Verdek - Elbe
	Bream	2.4	Hluboká nad Vltavou
	Roach	0.9	Podolí Vltava

Fresh fish (n=12)	BDE 47	BDE 99
Average [µg/kg]	1.61	0.12
Median [µg/kg]	1.49	0.09
Min - Max [µg/kg]	0.25 - 3.61	0.06 - 0.49
% > LOQ	100	100
Canned fish (n=8)	BDE 47	BDE 99
Average [µg/kg]	0.89	0.58
Median [µg/kg]	0.25	0.44
Min - Max [µg/kg]	0.04 - 5.43	0.11 - 1.36
% > LOQ	100	100
PBEB, HBB, BTBPE, OBIND, DBDPE	0.01 - 1.4	7 µg/kg

Conclusions

- A simple, fast and cheap method for the determination of 16 PBDEs and 6 ABFRs has been optimized and validated.
- 6 fish muscle tissue samples can be processed within 1 hour.
- GC-MS/MS system equipped with QqQ mass analyzer in EI was shown to be an effective tool for identification and quantification of all target analytes.
- Low limits of quantification (0.005–1 µg/kg) needed for exposition studies which require quantification of target contaminants in food even at very low levels, were achieved using GC–MS/MS.
- The independent control of the whole analytical procedure was done using the standard reference materials.
- No "confirmation" method is needed; analytes can be conclusively identified, as well as quantified.

SEE MORE DURING THE CON*f***IDENCE OPEN DAY – November 3, 2011**

Future plans

- Further decrease of LOQs chemical ionisation
 large volume-PTV_injection
- Analysis of batch of ca 120 samples risk-benefits models of co-ocurence of POPs & PUFA
 - **O Sampling sites Baltic Sea**
 - North Sea
 - Atlantic Ocean
 - Mediterranean Sea
 - Scandinavia
 - Netherlands
 - Czech republic
 - Fish species Herring
 - Cod / Hake / Whiting
 - Trout / Salmon
 - Bivalves

Acknowledgement

European research project CONffIDENCE "Contaminants in food and feed: Inexpensive detection for control of exposure" which is a part of Seventh framework program (call KBBE–2007–2–4–02)

Agilent Technologies

- Financial Support from Specific University Research (MSMT NO. 21/2011)
- Agilent Technologies
- My supervisor Prof. Jana Hajslova and the whole team from the Department of Food Chemistry and Analysis (ICT, Prague)

INSTITUTE OF CHEMICAL TECHNOLOGY PRAGUE

Thank you for your kind attention....

kamila.kalachova@vscht.cz

Open Day CONffIDENCE

CONffIDENCE: Safer food through rapid and cost-efficient tests for chemical contaminants in the food chain

Open Day at RAFA 2011 3 November 2011 Stella Hall: 13:00 – 16:00

Posters (23)

Demonstrations (8)

