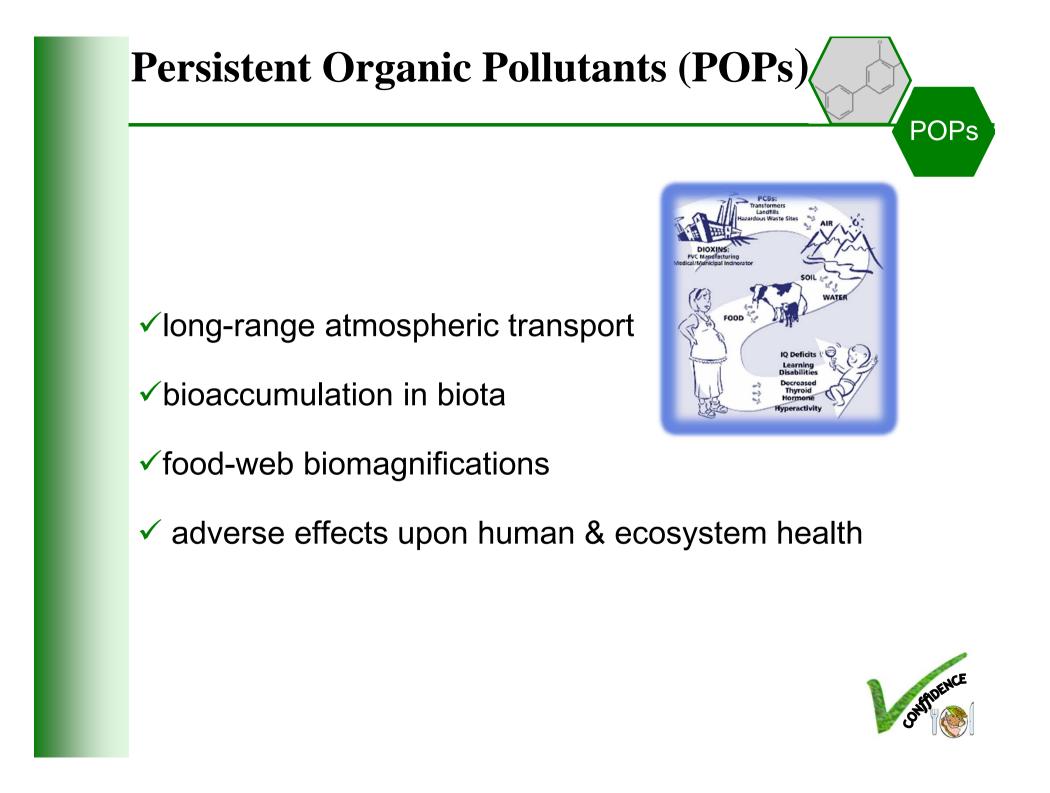
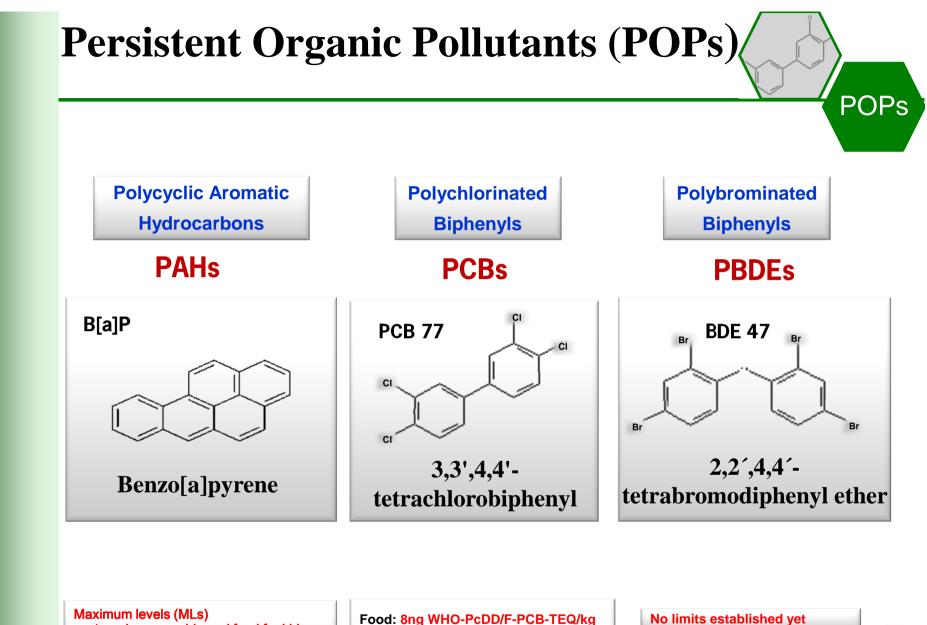
Multiplex Screening of Persistent Organic Pollutants in Fish using Spectrally-Encoded Microspheres


Anastasia Meimaridou


Kamila Kalachova, Weilin L. Shelver, Milan Franek, Jana Hajslova, Willem Haasnoot, Michel Nielen

Maxir	num ie	eveis (MLS)
1	daa	cereal-based food for kids
	ddd	shellfish
	ppb	smoked fish.
	ppb	edible oil ((EC)No1881/2006)
	ppp	

Food: 8ng WHO-PcDD/F-PCB-TEQ/kg fish meat for the sum of dioxins and DL-PCBs

Fish feed: 3.25 ng WHO- PCB-TEQ/kg feedc for the sum of DL-PCBs

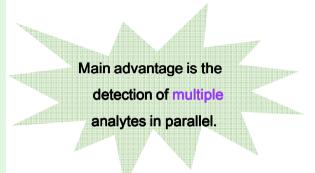
Motivation

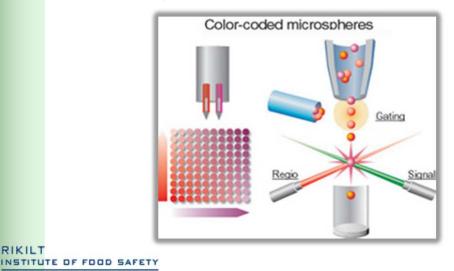
Persistent Organic Pollutants are known toxic, carcinogenic & mutagenic contaminants.

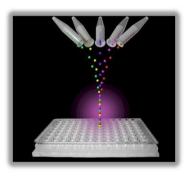
- **Existing detection methods:**
 - Analytical instrumental techniques
 - quite sensitive •
 - rather time-consuming, expensive and laborious. ٠
 - Bioanalytical assays (EROD or CALUX)
 - less time-consuming and expensive •
 - special lab facilities for the cell culture

Immunoassays

Limited multiplex possibilities

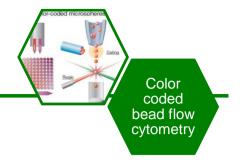


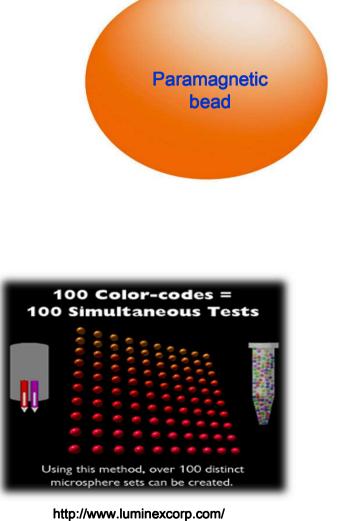



A good alternative can be Flow Cytometry (FC) in combination with the xMAP technology (Luminex). \succ

RIKILT

WAGENINGENUR




http://www.labodia.com/

Flow cytometric color encoded microbead technology

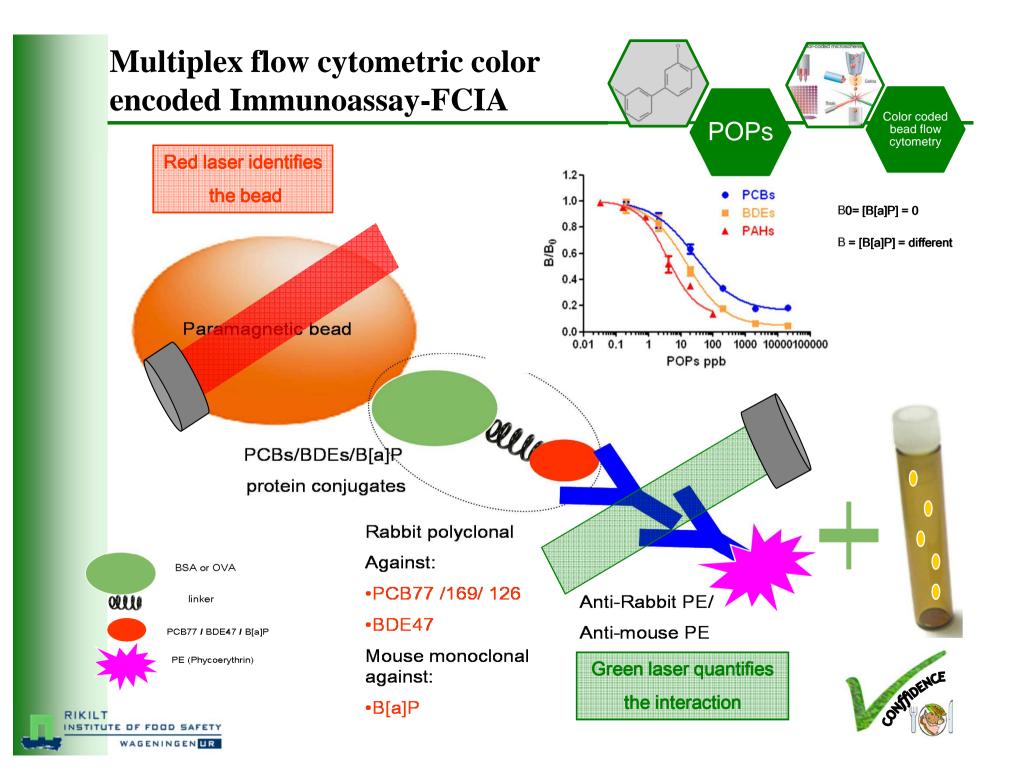
The microsphere is a ~ 6,2 µm polystyrene

two fluorescent dyes

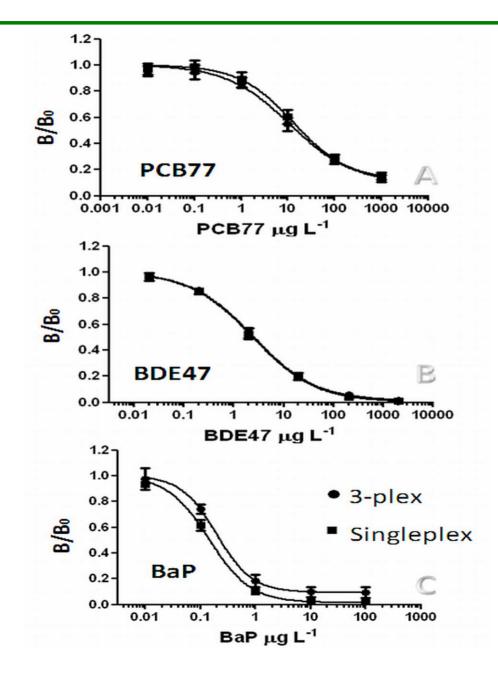
incorporated into

surface.

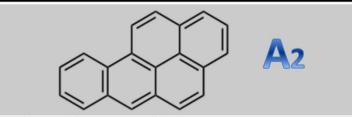
paramagnetic bead with


different ratios and with

carboxyl groups on the



Multiplex FCIAs for PCBs, BDEs & PAHs



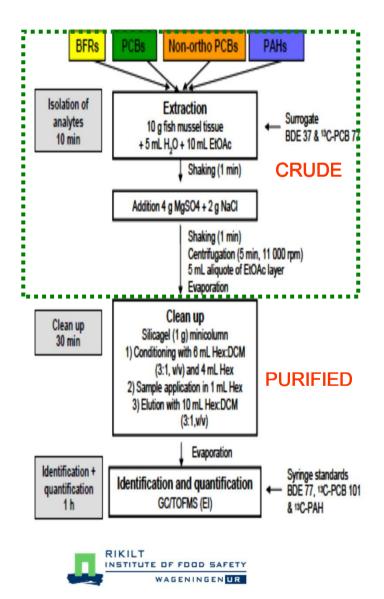
Multiplex FCIAs for PCBs, BDEs & PAHs -SELECTIVITY

Polycyclic Aromatic Hydrocarbons (PAHs)

		Cas-	Cross-reactivity %				
Compound	Abbr.	number	3-plex FCIA	Single-plex FCIA	ELISA ²		
Benzo[a]pyrene	BaP	50-32-8	100	100	100		
Chrysene	CHR	218-01-9	88±13	53±0.2	Π		
Benz[a]anthracene	BaA	5 6-66 -3	25±5	7±0.1	13		
Benzo[b]fluoranthene	BbF	205-99-2	3±0.5	<u>8±0.9</u>	24		
Benzo[k]fluoranthene	BkF	207-08-9	3±0.7	4±0.8	5		
Indenoi[1,2,3-cd]pyrene	IP	193-39-5	8±1	25±0.5	45		
Benzo[ghi]perylene	BghiP	191-24-2	4±1	0	1		
Dibenzo[a,h]anthracene	DBahA	53-70-3	0	0±0.3	nm		
Dibenzo{a,e]pyrene	DBaeP	192-65-4	0	0	nm		
Dibenzo[a,h]-pyrene	DBahP	1 89-64- 0	1±0.2	0±0.1	nm		
Dibenzo[a,l]pyrene	DBaiP	191-30-0	0	0±0.1	nm		
Dibenzo(a, i]pyrene	DBaiP	189-55-9	5±0.5	1±0.1	nm		
Benzo[j]fluoranthene	BjF	205-82-3	57±10	146±0.03	nm		

Polycyclic Aromatic Hydrocarbons (PAHs)

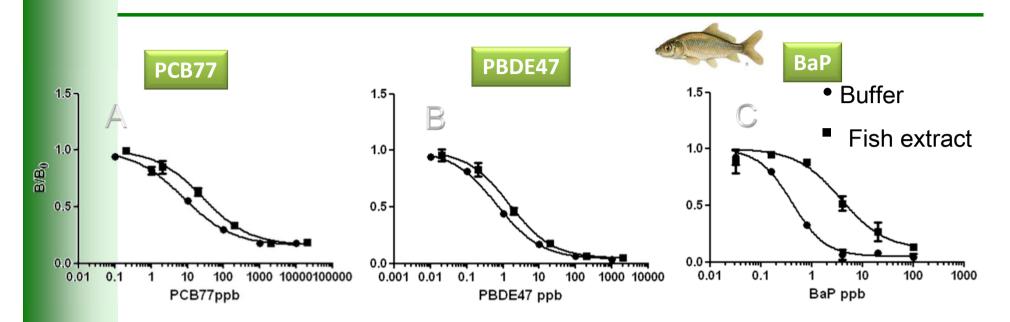
			Cross-reactivity %				
Compound	Abbr.	Cas-number	3-plex FCIA	Single-plex FCIA	ELISA ²		
Cyclopenta[c,d]pyrene	ССР	27208-37-3	40±0.5	1±0.5	0		
Anthracene	An	120-12-7	0	3±0.5	1		
Acenaphthylene	ACL	208-96-8	0	10±1	1		
Acenaphthene	AC	83-32-9	0	25±3	0		
Pyrene	РҮ	1718-52-1	0	0.1	18		
Fluorene	FL	86-73-7	0	0	0		
Phenanthrene	PHE	85-01-8	0	0	1		
Benzo[c]fluorene	BcFL	205-12-9	20±1	9±2	nm		
Naphthalene	nA	91-20-3	0	0	0		
Fluoranthene	FA	206-44-0	0	0	0		
5-methylchrysene	МСН	3697-24-3	24±5	11±1	n.m.		
OH-chrysene	6-OH- CHR	37515-51-8	7±2	2±0.2	n.m.		
1-OHpyrene	1-OH- PYR	5315-79-7	0	2±0.1	n.m.		



Multiplex FCIAs for PCBs, BDEs & PAHs -SELECTIVITY

Polychrorinated Biphenyls (PCBs)				Polybro	minate	ed Diph	enyl	s (BDEs)			
B					Br _m Br _n C						
Clx Clx						Fac		Cross-reactivity %			
		_	Cross-reactivities %		Compounds	Abbr.	Cas- number	3-plex FCIA	Single-plex FCIA	ELISA ⁴	
Compounds	Abbr.	Cas- number	3-plex FCIA	Single-plex FCIA	ELISA ³	Benzene, 2,4-dibromo-1-(2,4-	BDE 47	5436-43-1	100	100	100
1,1'-Biphenyl, 3,3',4,4'- tetrachloro-	PCB 77	32598-13-3	100	100	100	dibromophenoxy) Benzene, 2,4-dibromo-1-(4- bromophenoxy)-	BDE 28	41318-75-6	31±5	52±0.5	15
1,1'-Biphenyl, 3,4,4',5- tetrachloro-	PCB 81	70362-50-4	2±0.35	6±3	0	Benze ne, 1,2,4-tribromo-5-(2,4- dibromophenoxy)-	BDE 99	60348-60-9	48±11	31±0.5	90
1,1'-Biphenyl, 2,3,3',4,4'- pentachloro-	PCB 105	32598-14-4	12±7	4±2	0	Benzene, 1,3,5-tribromo-2-{2,4- dibromophenoxy}-	BDE 100	189084-64-8	8±0.5	1±0.1	3
1,1'-Biphenyl, 2,3,4,4',5- pentachloro-	PCB 114	74472-37-0	0	1±0.2	n.m.	1,1'-Biphenyl,2,2',4,4',5,5'- hexabromo-	BDE 153	59080-40-9	1±0.2	1±0.1	2
1,1'-Biphenyl, 3,3',4,4',5- pentachloro-	PCB126	57465-28-8	23±7	7±3	7	Benzene, 1, 3, 5-tribromo-2- (2, 4, 5-tribromophenoxy)-	BDE 154	207122-15-4	<0.1	0	0
1,1'-Biphenyl, 3,3',4,4',5,5'- hexachloro-	PCB 169	32774-16-6	9±2	1±0.5	0	Benzene, 1,2,3,5-tetrabromo-4- (2,4,5-tribromophenoxy)-	BDE 183	207122-16-5	<0.1	0	0
1,1'-Biphenyl, 2,3',4,4',5- pentachloro-	PCB 118	31508-00-6	0	1±0.1	n.m.	Benzene, 1, 1'-oxybis[2,3,4,5,6- pentabromo	BDE 209	1163-19-5	<0.1	0	0
1,1'-Biphenyl, 2,3',4,4',5'- pentachloro-	PCB 123	65510-44-3	1±0.1	1±0.2	n.m.	Phenol, 2,5-dibromo-4-(2,4- dibromophenoxy)-	4'-OH-BDE 49	602326-23-8	1±0.2	2±0.3	4
1,1'-Biphenyl, 2,3,3',4,4',5- hexachloro-	PCB 156	38380-08-4	10±3	2±0.3	n.m.	Phenol, 2, 4-dibromo-5-{2, 4- dibromophenoxy}-	5-OH-BDE 47	602326-30-7	3±0.7	18±1	9
1,1'-Biphenyl, 2,3,3',4,4',5'- hexachloro-	PCB 157	69782-90-7	0	1±0.4	0	Phenol, 3,5-dibromo-2-{2,4- dibromophenoxy)	6-OH-BDE47	79755-43-4	<1	0	1
1,1'-Biphenyl, 2,3',4,4',5,5'- hexachloro-	PCB 167	52663-72-6	0	1±0.1	n.m,	5-Hydroxy-2,2',4,4'- tetrabromodiphenylether	5-MeO-BDE- 047	602326-30-7	180±14	95±2	168
1,1'-Biphenyl, 2,3,3',4,4',5,5'- heptachloro-	PCB 189	39635-31-9	0	1±0.2	0	5'-Methoxy-2,2',4,4',5- pentabromodiphenyl ether	5'-MeO-BDE- 099	n/A	2±0.7	0	1

Multiplex FCIAs for PCBs, BDEs & PAHs–Sample preparation



INSTITUTE OF CHEMICAL TECHNOLOGY, PRAGUE Faculty of Food and Biochemical Technology

Department of Food Chemistry and Analysis

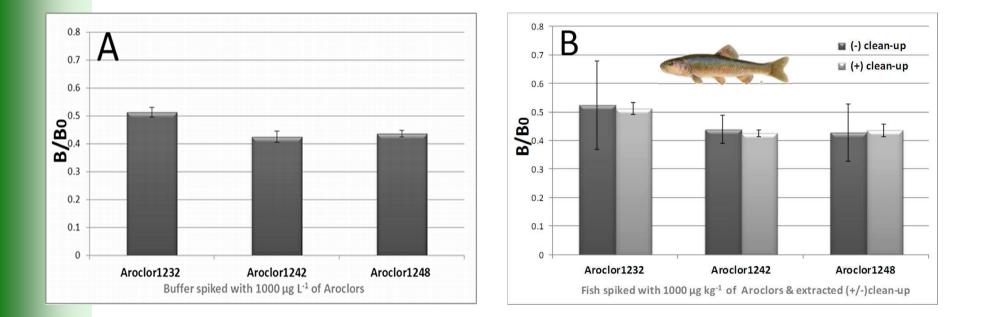
Multiplex FCIAs for PCBs, BDEs & PAHs – Fish extracts

Target POPs	Matrix	Goodness of the 4P R ^{2 a}	Curve steepness (mlng ⁻¹)*	IC ₅₀ ppb in the 3ple x FCI A ª	IC ₅₀ ppb in ELISAs
PCB77 (A)	Buffer	0.9968	-0.8	20±2	2-15 ³⁴
	Fish extract	0.9927	-0.6	55±5	Not measured
BDE47 (B)	Buffer	0.9992	-0.7	2±0.1	0.135 30
	Fish extract	0.9902	-0.7	2±0.4	Not measured
BaP (C)	Buffer	0.9857	-1.3	0.4±0.1	0.3 32
	Fish extract	0.9435	-1	4±0.5	Not measured

INSTITUTE OF CHEMICAL TECHNOLOGY, PRAGUE Ű Faculty of Food and Biochemical Technology

Department of Food Chemistry and Analysis

Multiplex FCIAs for PCBs, BDEs & PAHs in fish matrix



Fishes	Target POPs measured	Fat content %	µgkg-1 as measured in GC-MS	Clean- up	% of inhibition of maximum response in 3plexFCIA
Smoked trout	BaP	10	0.06	-	0
Smoked trout	BaP	11	1	-	80±2
Smoked trout	BaP	14	5	-	80±5
Smoked trout	BaP	13	14.7	-	80±3
Trout	PCBs/BDEs	2	n.d.	+	0±0.1
Chub	BDE47	1.5	0.43	+	45±2
Chub	BDE47	2	4.93	+	56±5
Chub	BDE47	2	9	+	50±4
Chub	PCB77	1.5	1.95	-	22±2

Multiplex FCIAs for Aroclors in buffer vs fish matrix

Conclusions

 ✓ 3-plex FCIA can detect BDEs, PCBs and PAHs in fish by combining 3 different immunoassays.

✓ 3-plex FCIA after further validation, can be a valuable screening tool for POPs in fish and other food and environmental samples prior to GC-MS.

✓ 3-plex FCIA meets the regulatory requirements of the EU and US food safety authorities for PCBs and PAHs.

