Determination of pyrrolizidine, tropane and ergot alkaloids in honey, feed and cereals; *and detection of ergot contamination in cereals*

> Hans van Egmond, Katrina Campbell, Colin Crews, Anne-Catherine Huet, Patrick Mulder, Noan Nivarlet, Albert Swinkels, Philippe Vermeulen

RAFA Prague, 3 November 2011

www.conffidence.eu

Gulran district

- Approx. 150 km², approx. 110.000 inhabitants
- Remote villages, undulating hills, scanty vegetation, serving as pasture lands
- Inhabitants mostly wheat farmers who may keep sheep and goats
- Diet consists mainly of wheat bread, occasionally meat

Outbreak of liver disease in Gulran district

More than 270 people affected
 Approx. 50 people died
 WHO alarmed, RIVM consulted
 Hypothesis: PA poisoning due to contamination of grain cereals
 Need for field test identified
 Samples sent to RIVM

Not all samples well-packed

Outbreak of liver disease in Gulran district

More than 270 people affected > Approx. 50 people died > WHO alarmed, RIVM consulted > Hypothesis: PA poisoning due to contamination of grain cereals Need for field test identified Samples sent to RIVM LC-MS/MS confirmed presence of PA from *Heliotropium* in wheat flour in very high amounts

Outbreak of liver disease in Gulran district

- More than 270 people affected
 Approx. 50 people died
 WHO alarmed, RIVM consulted
 Hypothesis: PA poisoning due to contamination of grain cereals
 <u>Need for field test identified</u>
 Samples sent to RIVM
 LC-MS/MS confirmed presence of PA from Holiotropium in whoat
 - of PA from *Heliotropium* in wheat flour in very high amounts

Outline of presentation

Introduction

- Alkaloids and their significance
- Activities in the CONffIDENCE project
- Dipstick methods for various alkaloids
- NIR imaging method to detect ergot
- Summary and conclusions

Outline of presentation

Introduction

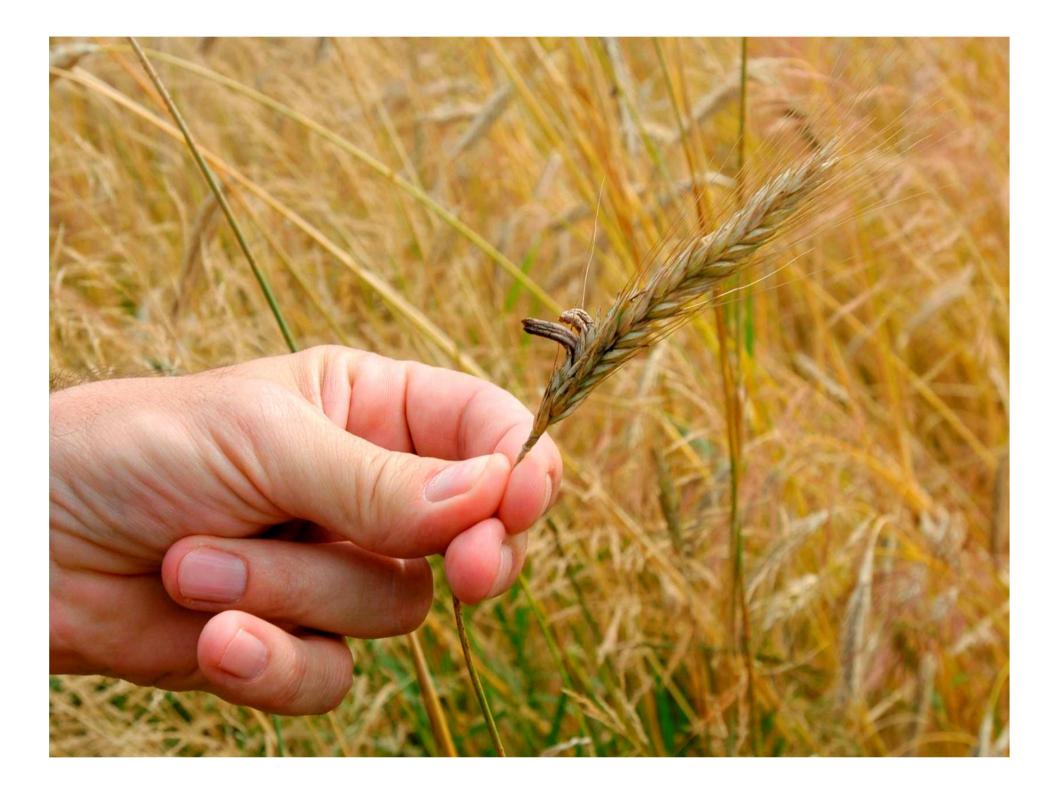
- Alkaloids and their significance
- Activities in the CONffIDENCE project
- Dipstick methods for various alkaloids
- NIR imaging method to detect ergot
- Summary and conclusions

Alkaloids

- Naturally occurring chemical compounds containing basic nitrogen atoms
- > Produced by various organisms, mainly plants
- Often physiologically active and poisonous
- Over 3000 compounds known, including pyrrolizidine, tropane and ergot alkaloids

Pyrrolizidine alkaloids

- Toxins formed in common plants, e.g. Senecio, that may contaminate food or feed
- Re-intro of certain species in nature may increase intoxications in wildlife and grazing animals
- Adverse effects in humans and livestock
- Methods of analysis: GC-MS, LC-MS/MS, but not (yet) interlaboratory validated
- Some carry-over from feed to milk observed



Tropane alkaloids

 Plant toxins, formed e.g. by Solanaceae; seeds may contaminate plants, e.g. soybean
 Humans: accidental exposure rare
 Animals: pigs very sensitive (*Datura* poisoning)
 Methods of analysis: HPLC, GC, RIA, CE-MS, LC-MS/MS, but not (yet) interlaboratory validated
 Info on carry-over scarce, traces of scopolamine found in eggs, no further data on residues

Ergot alkaloids

- Mycotoxins, formed by Claviceps purpurea occurring in grasses, grains, sorghum
- Effects: convulsions, gangrene, hallucinations
- > Animal sensitivity: poisoning outbreaks in livestock
- Methods of analysis: LC-FLD and LC-MS/MS, but no rapid field tests available
- Limited data on carry-over do not point at animal products as an important source of exposure

Outline of presentation

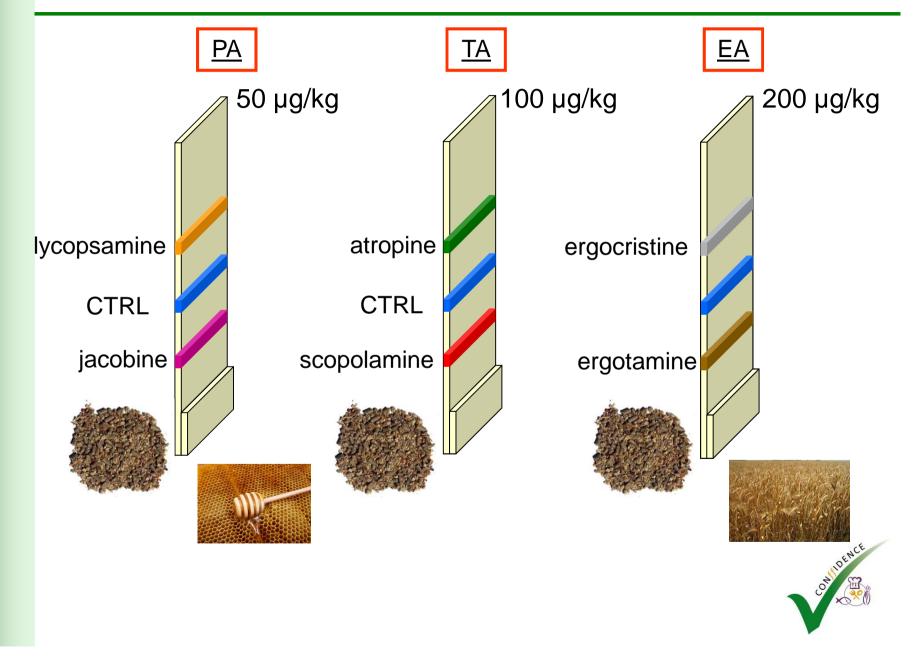
Introduction

- Alkaloids and their significance
- Activities in the CONffIDENCE project
- Dipstick methods for various alkaloids
- NIR imaging method to detect ergot
- Summary and conclusions

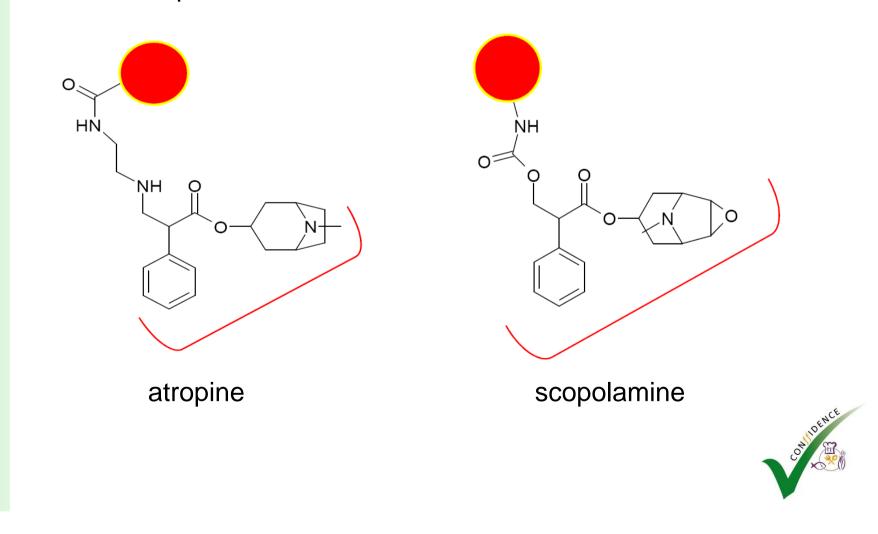
CON*ff*IDENCE

- LCP Food, Agriculture and Fisheries, and Biotechnology, 2008-2012
- Simple, fast, multi-analyte, multi-class detection
- WP Biotoxins includes sub-package alkaloids
 - determination of alkaloids (PA, TA, EA)
 - determination of ergot
- Intra- and interlaboratory validation studies

Outline of presentation

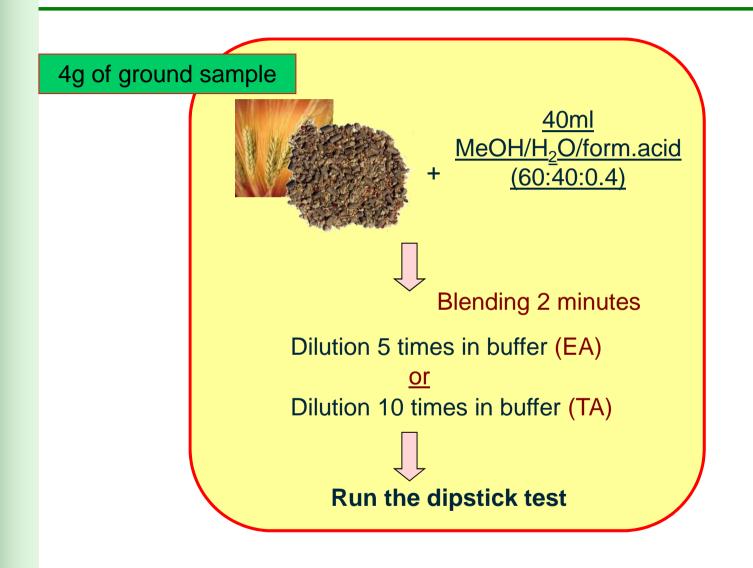

Introduction

- Alkaloids and their significance
- Activities in the CONffIDENCE project
- Dipstick methods for various alkaloids
- NIR imaging method to detect ergot
- Summary and conclusions



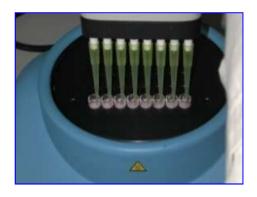
Multiplex dipsticks for PA, TA and EA

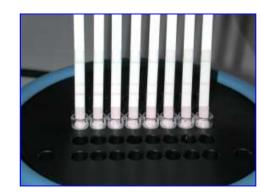
Conjugates for tropane alkaloids


Target alkaloids: atropine and scopolamine
 BTG / BSA Immunogens
 OVA Competitor

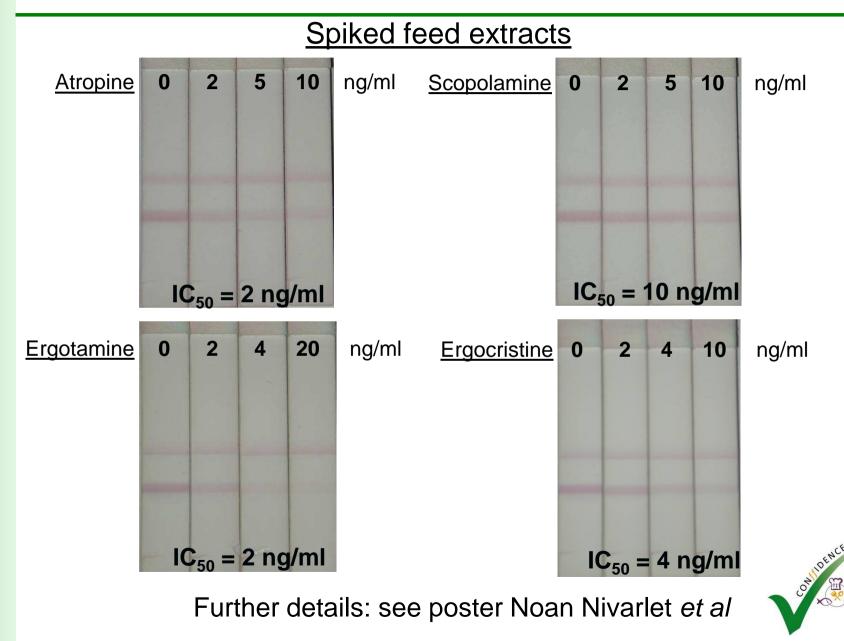
TA: AB production & characterisation

atropine- <mark>DSC</mark> - BTG/BSA	no immune response
atropine-CDI- BTG/BSA	-best IC ₅₀ : 0.2 ng/ml atropine in buffer -CR < 1% with scopolamine, no CR towards several pyrrolizidine and ergot alkaloids
scopolamine-CDI- BTG/BSA	no immune response
scopolamine- <mark>AA</mark> - BTG/BSA	no immune response
scopolamine-CDI- jeffamine-BSA	no immune response
scopolamine-CBDI- BTG/BSA	-best IC ₅₀ : 3.6 ng/ml scopolamine in buffer -similar CR with atropine, no CR towards several pyrrolizidine and ergot alkaloids
one Ab used to develop the dipstick for TA	


Simple and quick extraction



Dipstick procedure and reading



Multiplex dipsticks in practice

Next steps

Cross-laboratory testing of method for TA

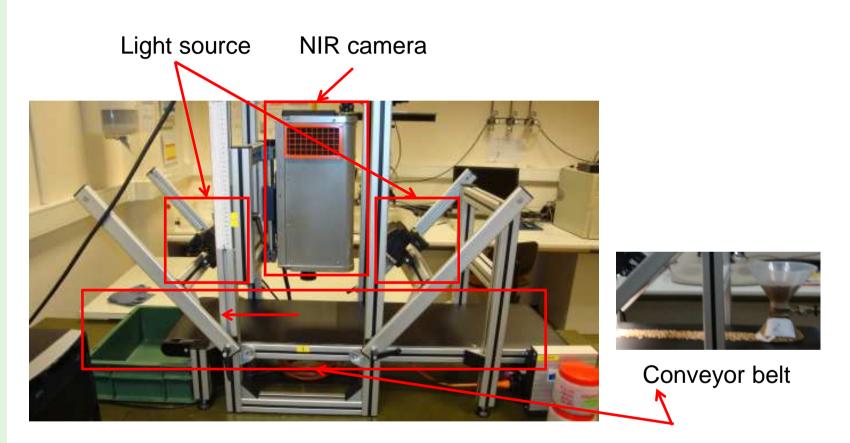
- > Amendment of plans:
 - to include ergometrine in addition to ergotamine and ergocristine in the EA dipstick method
 - to change format for PA into multiplex ELISA, and to include heliotrine & monocrotaline in addition to jacobine and lycopsamine
- Small-scale interlab. testing of various methods for the alkaloids to derive performance characteristics

Outline of presentation

Introduction

- Alkaloids and their significance
- Activities in the CONffIDENCE project
- Dipstick methods for various alkaloids
- NIR imaging method to detect ergot
- Summary and conclusions

Ergot limits in grain cereals in the EU


EU Directive 2002/32/EC on undesirable substances in animal feed: 0.1% ergot in all feedingstuffs containing unground feed

Commission Regulation 742/2010 on buying-in and selling of agricultural products under public intervention: 0.05% ergot in wheat

NIR hyperspectral imaging method to detect ergot

NIR line scan or push-broom imaging system

Demo by Vermeulen et al at Nutreco (2011)

Next steps

- Publication of method "On-line detection and quantification of ergot bodies in cereals by near infrared hyperspectral imaging" in Food Additives and Contaminants (accepted)
- Ongoing: testing line-scan set-up on grain samples from harvest 2011, and comparing results with those of classical microscopy method
- Presentation of full results at international conferences

Further details: see video and poster Philippe Vermeulen *et al*

AHEAD

Outline of presentation

Introduction

- Alkaloids and their significance
- Activities in the CONffIDENCE project
- Dipstick methods for various alkaloids
- NIR imaging method to detect ergot
- Summary and conclusions

Summary and conclusions

- Alkaloids: an area of growing concern
- CONffIDENCE: FP7 project with attention for e.g. rapid methodology to detect alkaloids and ergot
- Dipstick methods developed for TA and EA, multiplex ELISA will be explored for PA
- > Methods will undergo small scale interlab. testing
- NIR hyperspectral imaging method developed for ergot determination
- Visit posters and video for details and discussion with specialists, at CONffIDENCE session

Open Day CONffIDENCE

CONffIDENCE: Safer food through rapid and cost-efficient tests for chemical contaminants in the food chain

Open Day at RAFA 2011 3 November 2011 Stella Hall: 13:00 – 16:00

Posters (23)

Demonstrations (8)

5-9 NOVEMBER 2012 Rotterdam, the Netherlands

www.WMFmeetsIUPAC.org

Determination of pyrrolizidine, tropane and ergot alkaloids in honey, feed and cereals; *and detection of ergot contamination in cereals*

> Hans van Egmond, Katrina Campbell, Colin Crews, Anne-Catherine Huet, Patrick Mulder, Noan Nivarlet, Albert Swinkels, Philippe Vermeulen

RAFA Prague, 3 November 2011

www.conffidence.eu

