

MYCORED AFRICA 2011 CONFERENCE

Innovative and rapid methods for mycotoxin analysis

Angelo Visconti, Veronica Lattanzio, Annalisa De Girolamo, Vincenzo Lippolis, Michelangelo Pascale Institute of Sciences of Food Production (ISPA) National Research Council of Italy (CNR)

6th April 2011, CTICC, Cape Town, South Africa

Innovative and rapid methods

Conventional determination requires:

- Tedious sample preparation
 - " Grinding of sample
 - ⁷ Extraction
 - " Clean-up
- Time consuming separation and detection
 - ″ GC-ECD, GC-MS
 - " HPLC-DAD, HPLC-FD, HPLC-MS
- ✓ High costs
 - " equipments
 - " operations
- ✓ Skilled persons

Innovative/Rapid methods for mycotoxin analysis

- Immunoassays/immunosensors:
 - Flow through immunoassay (FIA)
 - Lateral flow devices (LFD) or dipsticks
 - Surface plasmon resonance (SPR)
 - Fluorescence polarization immunoassay (FPIA)
 - Electrochemical immunoassay (Screen printed electrodes)
 - Others (Piezoelectric sensors, Fiber optic immunosensor,...)
- Methods using alternative receptor (aptamer, MIP, antibody fragment,

peptide)

Infrared spectroscopy (IR)

Lateral flow devices (LFD) or dipsticks

Lateral flow devices (LFD) or dipsticks

CONffIDENCE project (7 FP): Contaminants in Food and Feed Inexpensive Detection for Control of Exposure WP4c: Mycotoxins (WP leader Dr. A. Visconti)

Multiplex dipsticks - Fusarium toxins in cereals, cereal food, maize feed

Prototype multiplex dipstick: indirect competitive immunoassay

Multiplex dipsticks - Fusarium toxins in cereals, cereal food, maize feed

Multi-mycotoxin dipsticks: Protocol of analysis

Methanol/water Blending (for all mycotoxins) Incubation at 40°C Migration *Optimized conditions*

Total analysis time:

30 min

Multi-mycotoxin dipsticks: Analysis of Naturally Contaminated Maize Samples

Achieved cut off levels in cereals, cereal foods, maize feed						
CUT OFF levels (µg/kg) (fixed at target levels corresponding to 80% of European MRL)						
ZEA T-2 +HT-2 DON FB1+FB2						
WHEAT	80	400	1400	-		
OATS	80	400	1400	-		
MAIZE	280	400	1400	3200		
MAIZE FEED	2400	400	9600	5000		
WHEAT based BREAKFAST CEREALS	40	80	400	-		
MAIZE based BREAKFAST CEREALS	80	80	400	640		

Good agreement between dipstick and LC-MS/MS analysis						-	12	63			
_	ZI	EA	T-2 +HT-2		DON		FB ₁ +FB ₂		HAIZE	HRITH	Mais
Sample	dipstick	LCMSMS µg/kg	dipstick	LCMSMS µg/kg	dipstick	LCMSMS µg/kg	dipstick	LCMSMS µg/kg			
1	NEG	n.d.	NEG	n.d.	NEG	n.d.	NEG	725		H	E
2	NEG	n.d.	NEG	n.d.	POS	24200	POS	8150		E	
3	POS	420	POS	392	NEG	298	NEG	725			J

Fluorescence Polarization Immunoassay (FPIA)

Fluorescence Polarization measures the size of fluorescent molecules in

FPIA. basic principles

FPIA is a homogeneous competitive fluorescence immunoassay

FPIA. basic principles

contaminated extract

FPIA. DON in wheat and derivative products

Lippolis V., Pascale M., Visconti A., J. Food Prot., 2006, 69, 2712-2719

Automated FPIA - DON in wheat and derivative products*

The automated FP system has been developed by assembling a FP reader with an autosampler assisted by a PC through a specific software for data handling.

ADVANTAGES

- Fully automated
- Easy-to-use
- Good precision (<5%)
- Useful and practical alternative to HPLC
- More convenient than HPLC for routine analyses due to higher throughput (15 samples / 3 h vs. 1 sample / 3 h)

^{*} European Patent Application No. 1882938A2. Visconti A., Pascale M., Lippolis V., Ranieri R., Silvestri M. e DoAlessandro A.

FPIA. OTA in wine

A rapid FP immunoassay with SPE clean-up has been developed for semiquantitative screening of OTA in red wine

Confirmatory analysis is required for OTA levels of 1-3 ng/mL

Zezza F., Longobardi F., Pascale M., Eremin S.A., Visconti A., Anal. Bioanal. Chem., 2009, 395, 1317-1323

Novel materials for mycotoxin analysis: Aptamers

- Aptamers are single-stranded oligonucleotides (DNA or RNA) that bind with high affinity and specificity to specific targets.
- Aptamers are produced by an *in vitro* selection process called SELEX (Systematic Evolution of Ligands by Exponential).
- Aptamers, like antibodies, have potential in a broad range of **applications** including **biosensors**, affinity chromatography, lateral flow devices.
- Aptamers for OTA and FB₁ have been produced.

DNA aptamer-SPE column clean-up. OTA in wheat

De Girolamo A, McKeague M, Miller DJ, DeRosa MC, and Visconti A, 2011. Food Chem., 127, 1378-1384.

DNA aptamer-SPE column clean-up . OTA in wheat

De Girolamo A, McKeague M, Miller DJ, DeRosa MC, and Visconti A, 2011. Food Chem., 127, 1378-1384.

Fourier Transform Near Infrared Spectroscopy (FT - NIR)

FT NIR . DON in wheat

Sample preparation

<u>Time < 3 min</u>

Sample collection

wheat infected by *Fusarium* species (DON contamination)

Milling

Particle size < 500 µm

FT-NIR Analysis

<u>Time < 2 min</u>

Nicolet Antaris II, Thermo Scientific Corp. NIR region, 10000-4000 cm⁻¹ Resolution, 8 cm⁻¹ Scans, 128/sample Detector, InGaAs

RAPID/NOT DESTRUCTIVE

FT NIR . DON in wheat

Wheat	Calibration/ validation set	Range calibration set (µg/kg)	RMSEC* (µg/kg)	RMSEP* (µg/kg)	RMSECV* (µg/kg)	
Durum	76 / 30	0 - 2600	240	306	470	
Common	77 / 30	0 - 3000	303	348	516	
Durum + Common	149 / 48	0 - 3000	386	379	555	

*Root Mean Square Error of Calibration (RMSEC), of Prediction (RMSEP), of Cross-Validation (RMSECV)

De Girolamo A., Lippolis V., Nordkvist E., and Visconti A., 2009. Food Add Contam., 26, 6, 907-917.

FT NIR . DON in wheat

DON by	HPLC	(µg/kg)
--------	------	---------

Wheat	Calibration/ validation set	Range calibration set (µg/kg)	RMSEC* (µg/kg)	RMSEP* (µg/kg)	RMSECV* (µg/kg)
Durum	76 / 30	0 - 2600	240	306	470
Common	77 / 30	0 - 3000	303	348	516
Durum + Common	149 / 48	0 - 3000	386	379	555

*Root Mean Square Error of Calibration (RMSEC), of Prediction (RMSEP), of Cross-Validation (RMSECV)

De Girolamo A., Lippolis V., Nordkvist E., and Visconti A., 2009. Food Add Contam., 26, 6, 907-917.

CONCLUSIONS

Method	Advantages	Disadvantages
Multi-mycotoxin dipsticks	- Rapid - Practical - No clean-up	 Semi-quantitative Antibody cross-reactivity Matrix-interference problems
FPIA	- Rapid - Automated - No clean-up	 Antibody cross-reactivity Calibration models needed Matrix effects No application to multi-mycotoxin analysis
FT-NIR	- Rapid - Not destructive - Practical	 Qualitative/semi-quantitative Expensive equipment Specific Calibration models needed Statistics basis required
Aptamer-SPE	 Good selectivity Good stability Re-usability Good batch-to-batch reproducibility 	- Sensitivity - No commercial availability

-

Acknowledgements

United States Department of Agricultural Agricultural Research Service

Chris M. Maragos

- David J. Miller
- Maria C. DeRosa
- Maureen McKeague

Basilica of St. Nicholas, Bari, Italy

Rudolf Krska

