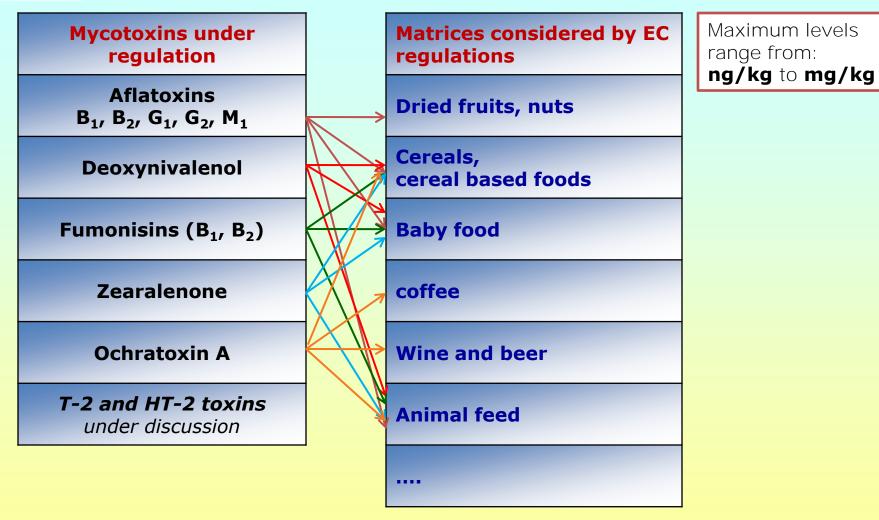
ANALYTICAL CHALLENGES IN DEVELOPING STRATEGIES FOR MYCOTOXIN PREVENTION AND CONTROL -ADVANCED AND RAPID METHODS FOR MULTI-TOXIN AND MULTI-BIOMARKER ANALYSIS

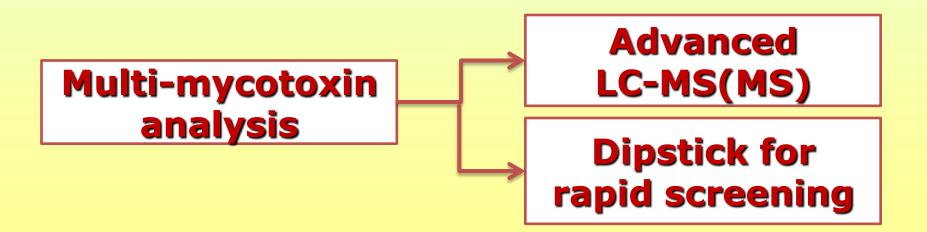
A. VISCONTI, V.M.T. Lattanzio, M. Solfrizzo, V. Lippolis

National Research Council Institute of Sciences of Food Production CNR-ISPA, Bari


FUNGAL DEVELOPMENT AND MYCOTOXIN PRODUCTION IN FOOD

Need to improve mycotoxin monitoring and prevention to minimize contamination at different critical steps of the food chain "from farm to fork"

EC regulations 1881/2006 and 1126/2007 Maximum permitted levels of mycotoxins

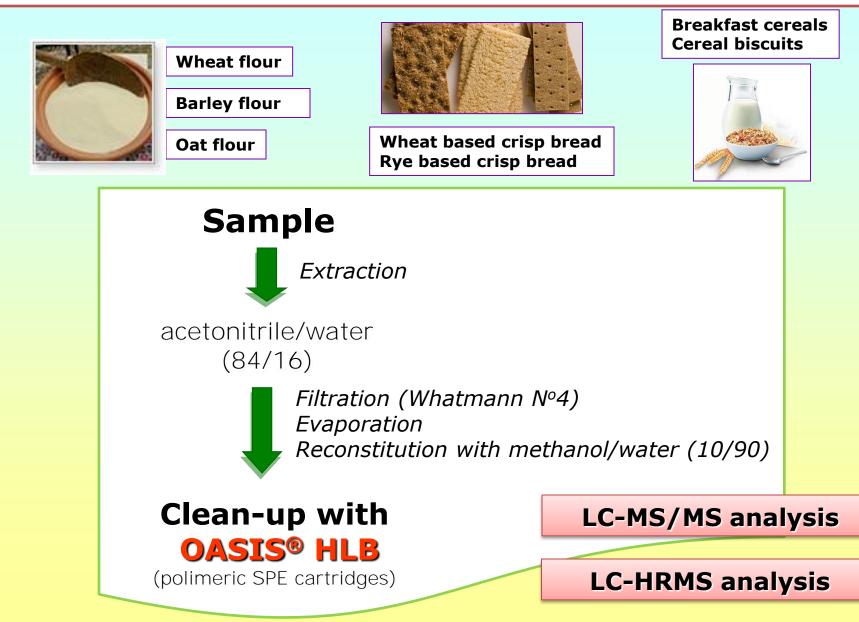

Need of **reliable** analytical methods **applicable at regulatory levels** in a **wide range** of matrices

PRESENTATION OUTLINE

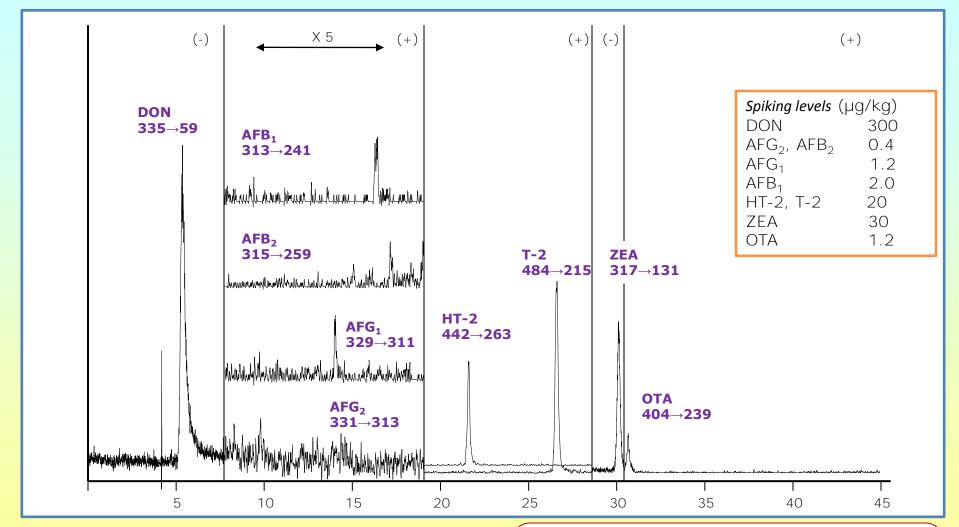
✓ Multi-mycotoxin determination in food by LC-MS(MS)
 Tandem MS and high resolution MS approaches

✓ Multi-biomarker determination in human urine by LC-MS/MS

✓ Multi-mycotoxin determination in food/feed by multiplex dipstick immunoassay

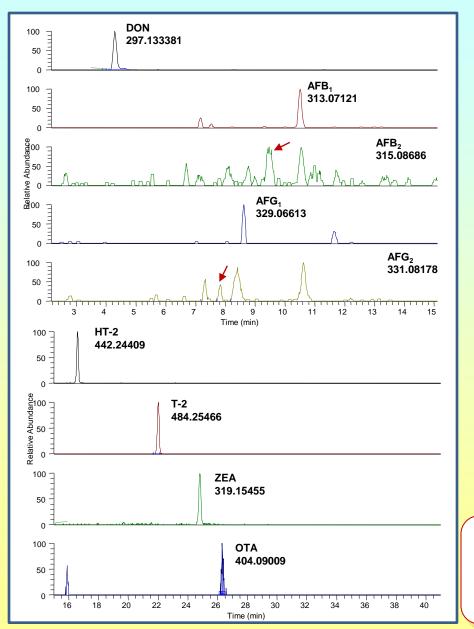


Challenges in multi-mycotoxin method development for food matrices


- Sample preparation
- Analyte detection
- Method validation
- Wide range of applicability

HPLC coupled with Mass Spectrometry

Determination of aflatoxins, ochratoxin A and *Fusarium* toxins in cereal-based products by LC-MS/MS or LC-HRMS after SPE clean up



LC-MS/MS chromatogram of a spiked crisp bread extract

Column: Gemini RP18 (150 x 2.0 mm, 5 μ m) Phenomenex Flow: 200 μ l/min Column oven: 40 °C Solv A: H₂O, 0.5% acetic acid, 1mM AcNH₄ Solv B: CH₃OH, 0.5% acetic acid, 1mM AcNH₄ Injection volume: 20 μ l (100 mg sample)

LC-HRMS chromatogram of a spiked crisp bread extract

Spiking levels	(µg/kg)
DON	300
AFG_2, AFB_2	0.4
AFG_1	1.2
AFB ₁	2.0
HT-2, T-2	20
ZEA	30
ΟΤΑ	1.2

Column: Gemini RP18 (150 × 2.0 mm, 5 μ m) Phenomenex Flow: 200 μ l/min Column oven: 40 °C Solv A: H₂O, 0.5% acetic acid, 1mM AcNH₄ Solv B: CH₃OH, 0.5% acetic acid, 1mM AcNH₄ Injection volume: 20 μ l (100 mg sample)

RECOVERIES and REPEATABILITY

EC acceptance criteria (401/2006)

	Recoveries, % (RSDr %) in WHEAT BASED CRISP BREAD										
Spiking level (µg/kg)	300	2	0.5	1.2	0.5	20	20	30	1.2		
	DON	AFG ₂	AFG ₁	AFB ₂	AFB ₁	HT-2	T-2	ZEA	ΟΤΑ		
MS/MS	100 (0)	101 (6)	106 (5)	85 (10)	102 (6)	107 (2)	108 (6)	84 (5)	101 (3)		
HRMS	104 (0)	102 (5)	104 (4)	80 (2)	1 02 (2)	105 (1)	103 (1)	85 (1)	93 (2)		

Similar results in:

barley, wheat and oat flours, rye-based crisp bread

DETECTION LIMITS

EC maximum permitted levels

(EC regulations 1881/2006 and 1126/2007)

	LOD (µg/kg)							
	LC-HRMS	LC-MS/MS						
DON	0.3 (+)	29.0 (-)						
AFG ₂	0.1	0.5						
AFG ₁	0.2	0.7						
AFB ₂	0.1	0.4						
AFB ₁	0.1	0.5						
HT-2	0.3	0.5						
T-2	0.3	0.5						
ZEA	0.4	2.2						
ΟΤΑ	0.2	0.1						

MATRIX EFFECTS

	Matrix effe SSE %	ct
	LC-HRMS	LC-MS/MS
DON	76	95
AFG ₂	100	95
AFG ₁	100	89
AFB ₂	67	88
AFB ₁	100	88
HT-2	90	95
T-2	94	103
ZEA	65	70
ΟΤΑ	87	106

SSE = signal suppression/enhancement

= (slope of matrix calibration/slope of standard calibration)*100

When **robust sample preparation** and **good chromatographic separation** are applied, **similar matrix effects** are obtained with different MS instrumentation and detection modes.

MS/MS detection HRMS detection legislation requirements

EC performance criteria (2002/657/EC) Doc No Sanco/10684/2009

MS/MS	HRMS*					
1 precursor ion 2 daughters ions	2 ions Mass accuracy < 5ppm					
example	example: AFB ₁					
313.0 - 241.1	313.07066					
313.0 - 213.4	241.04953					

* Frament ion obtaiend by collision cell induced fragmentation (HCD)

Proficiency test for multi-mycotoxin methods based on LC-MS(MS)

Aim of the study: to obtain information on currently used LC-MS(MS) methodologies for multi-mycotoxin analysis and relevant performances.

✓ 56 laboratories involved

✓ Distribution of materials ongoing (by Dec 15th, 2010)

✓ Results expected by February 2011.

LC-MS/MS DETERMINATION OF MULTI-MYCOTOXIN BIOMARKER IN HUMAN AND ANIMAL URINE

✓ A reliable indication of individual exposure to the major mycotoxins may be provided by a biomarker

✓ Potential markers include the parent compound or metabolite

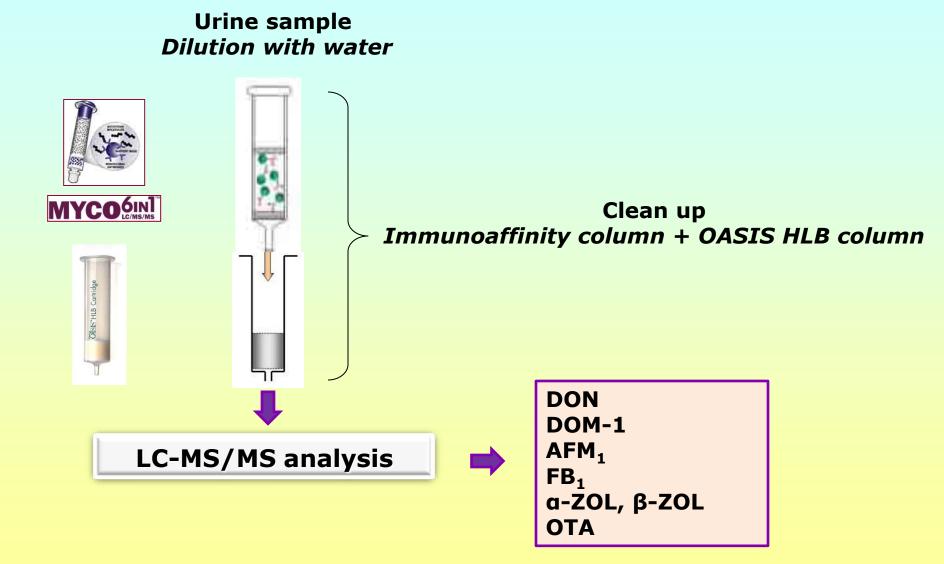
Mycotoxin	Urinary biomarker			
aflatoxin B ₁	aflatoxin M ₁ (AFM ₁)			
ochratoxin A	ochratoxin A (OTA)			
doovunivalanal	deoxynivalenol (DON)			
deoxynivalenol	de-epoxydeoxynivalenol (DOM-1)			
70050100000	alfa- zearalenol (a -ZOL)			
zearalenone	beta- zearalenol (β -ZOL)			
fumonisin B ₁	fumonisin B ₁ (FB ₁)			

 \checkmark The response of DON, DOM-1, AFM₁, FB₁, a-ZOL, β-ZOL, OTA as biomarker of mycotoxin exposure has been demostrated in pig, rat and mouse.

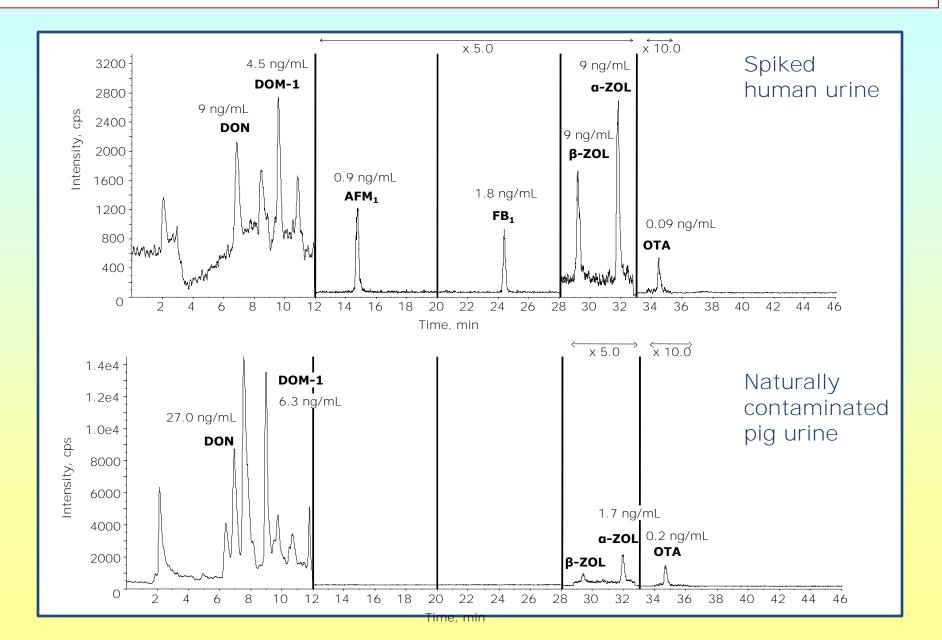
Challenges in multi-mycotoxin method development for biological fluids

Lack of suitable methods of analysis to detect simultaneously a range of chemically different metabolites at trace levels in biological fluids

⇒**Sensitivity** (up to pg/ml)


Sample preparation

Analyte detection


Method validation

HPLC coupled with Mass Spectrometry

Sample preparation and analysis

MRM chromatograms of urine samples after IAC-SPE clean up

Mean Recoveries, % (RSDr %) in Human Urine									
Spiking level range(ng/ml)	3-12			1.5-6.0	0.3-1.2	0.6-2.4	0.03-0.12		
Mycotoxin	DON	a-ZOL	β-ZOL	DOM-1	AFM ₁	FB ₁	ΟΤΑ		
Recovery (RSDr)	77 (13)	72 (9)	83 (18)	78 (9)	96 (8)	62 (3)	65 (8)		

Lir	Limits of Detection (S/N = 3) in Human Urine (ng/ml)									
DON α-ZOL β-ZOL DOM-1 AFM1 FB1 OTA										
0.8	0.8	2.2	0.8	0.06	0.1	0.02				

LC-MS/MS CHARACTERIZATION OF **DON** URINARY METABOLITE PROFILE IN HUMAN AND RATS

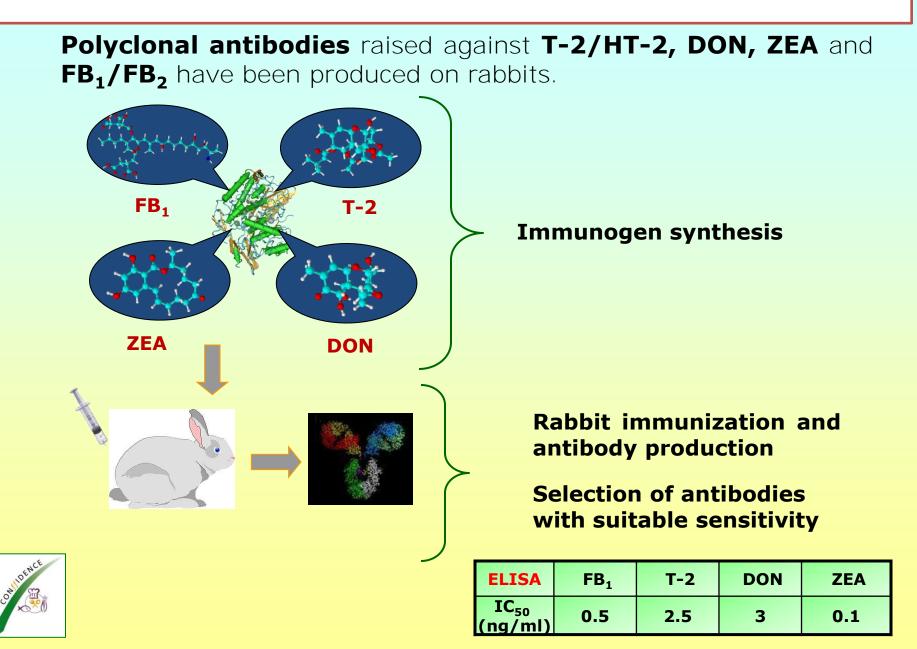
V.M.T. Lattanzio, M. Solfrizzo, A. De Girolamo, S. Chulze, A. Torres, A. Visconti, J. Chrom. B. XXX

	Molecular structure	Characteristic	Presence	in urine
	Molecular structure	ions (m/z)	Rat	Human
DON	HO O H3C H3C H3C H3C H3C H3 H3C H3 H3C H3 H3C H3 H3 H3C H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3 H3	355.1295.0Negative265.1ions59.0	YES	YES
DOM-1	HO H_2C H_2C H_2C H_3C H_2 H_3C H_2 H_3C H_2 H_3C	339.1279.0Negative249.1ions59.0	YES	NO
DON glucuronide1		490.2297.2Positive249.2ions231.1	YES	YES
DON glucuronide2		490.2 177.1 <i>Positive</i> 103.1 <i>ions</i> 89.0	NO	YES
DOM-1 glucuronide	$H_{HO} = H_{HO} = H$	474.2 281.2 Positive 233.1 ions 130.1	YES	YES

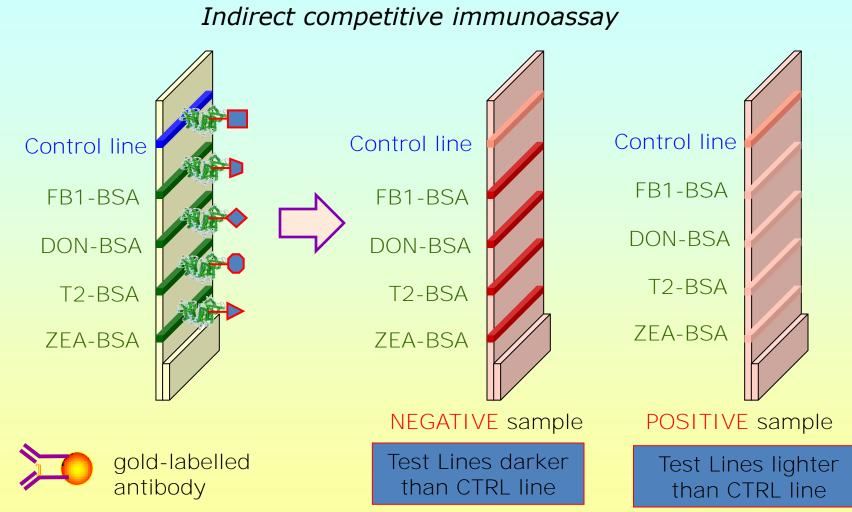
the position of glucuronide moiety is indicative

Challenges in multi-mycotoxin method development Rapid methods based on dipstick immunoassays

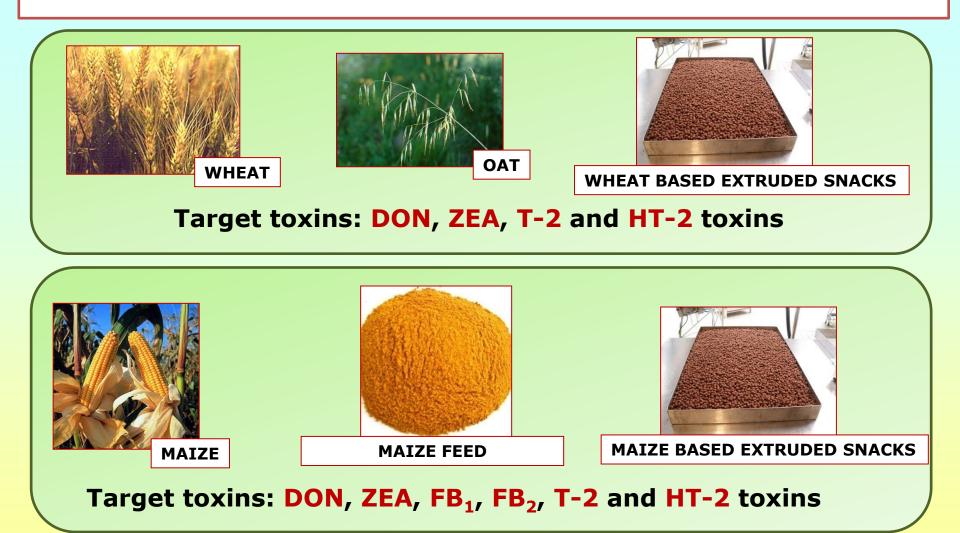
Antibody production and characterization


Multiplex dipstick design and assembly

Development of simplified sample preparation
protocols


Method validation and application

Antibody production and characterization



Multiplex dipstick design

Materials chosen for method development

Required cut off: 80% of EU maximum permitted levels

Sample preparation and analysis

Raw cereals Breakfast cereals Maize feed

Methanol/water 2 min blending

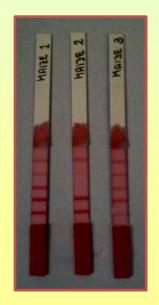
analysis

Incubation at 40°C Migration

Positive ZEA/T2/DON/ /DON 12 **Negative sample** Positive ZEA/ Positive ZEA positive ZEA

Extraction recoveries, % (RSDr %)							
	ZEA	ZEAT-2 + HT-2DON $FB_1 + FB_2$					
WHEAT	103 (6)	73 (7)	97 (8)	-			
OATS	107 (9)	73 (6)	93 (4)	-			
MAIZE	105 (6)	107 (4)	105 (3)	109 (3)			

Recoveries were evaluated in triplicate at cut-off levels


CUT OFF levels (µg/kg)								
	ZEAT-2 + HT-2DON $FB_1 + FB_2$							
WHEAT	80	400	1400	-				
OATS	80	400	1400	-				
MAIZE	280	400	1400	3200				

Analysis of Naturally Contaminated Maize Samples

Comple	ZE	EA	T-2 +	·HT-2	DC	ON	FB ₁ -	FB ₂
Sample	dipstick	LCMSMS µg/kg	dipstick	LCMSMS µg/kg	dipstick	LCMSMS µg/kg	dipstick	LCMSMS µg/kg
1	NEG	n.d.	NEG	n.d.	NEG	n.d.	NEG	725
2	NEG	n.d.	NEG	n.d.	POS	24200	POS	8150
3	POS	420	LOW POS	392	LOW POS	298	NEG	725

Good agreement between dipstick and LC-MS/MS analysis.

CUT OFF levels (µg/kg)				
	ZEA	T-2 +HT-2	DON	$FB_1 + FB_2$
MAIZE	280	400	1400	3200

CONCLUSIONS (I)

LC-MS(MS) MULTI-MYCOTOXIN DETERMINATION IN FOOD

Liquid chromatography coupled to tandem MS or high resolution MS provides a reliable tool for quantitation of mycotoxins in foods at regulatory levels.

Legislation requirements are fulfilled with respect to:

- **recoveries** (EC Regulation 401/2006)
- repeatability and reproducibility (EC Regulation 401/2006)
- LOD enabling to detect mycotoxins at regularory levels in the concerned matrices (EC regulations 1881/2006 and 1126/2007)
- mass spectrometry detection EC performance criteria (2002/657/EC) (Doc No Sanco/10684/2009)

CONCLUSIONS (II)

LC-MS/MS DETERMINATION OF MYCOTOXIN BIOMARKERS IN HUMAN AND ANIMAL URINE

Advanced LC-MS/MS methodologies have been used for:

✓ simultaneous determination of multi-mycotoxin biomarker
 in urine

✓ direct determination of mycotoxin metabolic profile at trace levels

Methods based on high selective and sensitive LC-MS/MS are applicable to monitoring programmes providing a complete and realistic framework of exposure levels and relevant metabolic routes.

CONCLUSIONS (III)

MULTI-MYCOTOXIN DETERMINATION BY DIPSTICK IMMUNOASSAYS

✓Multiplex dipstick immunoassays for the determination of ZEA, T-2+HT-2, DON and FB₁+FB₂ in cereals, cereal-based food and maize feed have been developed, combining the concepts of "multiplex" and "rapid" detection.

✓The resulting immunoassay protocol is: rapid, inexpensive, and easy-to-use.

✓ Robustness and reliability of dipstick based methods should be demonstrated through interlaboratory studies.

ACKNOWLEDGEMENTS

Lucia Gambacorta

Michele Suman

Michal Godula

CNR-ISPA

Barilla SpA

Thermo Fisher Scientific

CONffIDENCE Partners:

Anne-Chaterine Huet Philippe Delahaut

Noan Nivarlet Benoit Granier

Unisensor

CER

Albert Swinkels

Hans van Egmond

Karin Kraehenbuehl

Masterlab

_ _. __

RIKILT

hl Nestlé

THANK YOU for your attention!

National Research Council Institute of Sciences of Food Production CNR-ISPA, Bari