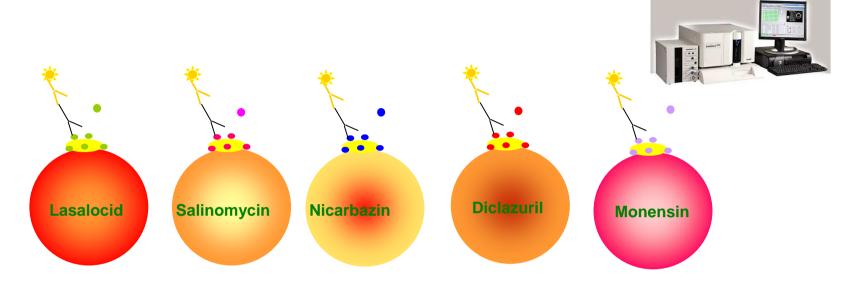
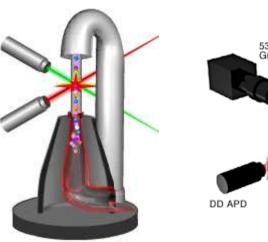
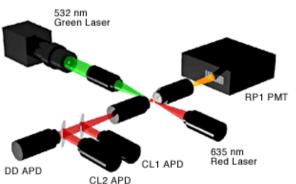
Conffidence Cluster 2 -Veterinary Pharmaceuticals

Coccidiostats (WP2a) Antibiotics (WP2b)

27th January 2010






WP2a objectives

- Validated flow cytometry based multiplex immunoassay for residues of lasalocid A, monensin, salinomycin, narasin and nicarbazin in eggs and their
- Cross- contamination in non-targeted feed (laying hens feed)
- Simplified sample preparation protocols for eggs and feed
- Carry-over study of lasalocid from laying hens feed to eggs aiming at contribution to a predictive hazard behaviour model.

Flow cytometry based immunoassay

APD: Avalanche photodiode detector

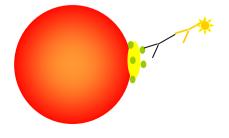
DD: Doublet discriminator channel, discriminates single beads from aggregated beads

CL1: Classify channel, allows multiplexing, detects dye inside beads

CL2: Classify channel, allows multiplexing, detects dye inside beads

RP1: Reporter channel, quantitates assay in this channel

Results and conclusions


New antibodies

Lasalocid IC50 = 1 ng/ml

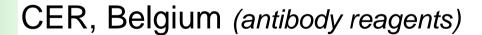
Monensin
 To low max. response

Narasin
 Ready to be tested

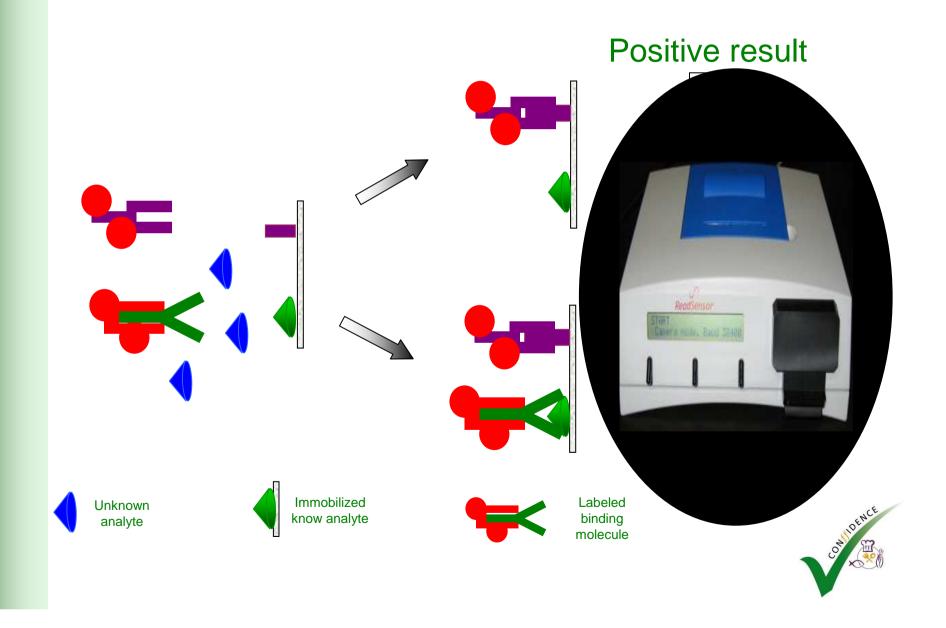
- 4 assays (nicarbazin, diclazuril, salinomycin and lasalocid) are ready to be tested with sample materials.
- Diclazuril and nicarbazin antibodies showed no cross-reaction with 10 other coccidiostats.
- Salinomycin antibody only showed cross-reaction with narasin (2%).
- Lasalocid antibody will be tested for cross-reaction.

Dipstick assays for antibiotics

Fera, UK (WP leader)


Unisensor, Belgium (technology)

CSIC, Spain (technology)



WP2b antibiotics - Objective

"Development, validation and impact demonstration of <u>single-component</u> and <u>multiplex dipsticks</u> to detect <u>malachite green</u>, <u>tetracyclines</u>, <u>tylosin</u>, <u>chloramphenicol</u>, <u>quinolone and sulfonamide</u> antibiotics in a range of matrices including <u>fish</u>, <u>feeds</u>, <u>urine</u>, <u>processed meat and honey</u>"

Dipstick technology mechanism of action

Tetrasensor® for multi-tetracyclines

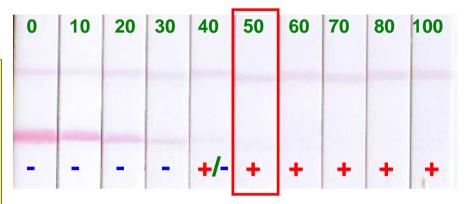
http://www.tetrasensor.com/

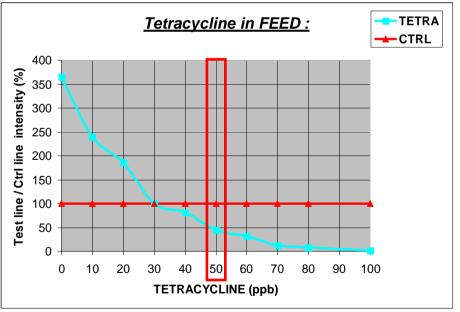
Receptor (TetR) based dipstick for;

oxytetracycline, tetracycline, chlortetracycline, doxcycline, minocycline & others

In muscle, kidney, feed, honey, urine, milk

Simple assay protocol


Sample - dilution (10x) in buffer


Homogenise (2 min)

Centrifugation (2 min)

200 µl of sample + reagents

Test: 10 min at RT

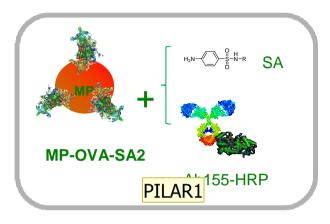
Tetrasensor® limits of detection

Matrix	Limit of detection	Target Conc.	Time (min)	
	(μg kg ⁻¹)	(μg kg ⁻¹)	Preparation	Analysis
Muscle	20 -100	50	5	10
Honey	10	20	1	30
Urine ²	50	100	1	10
Feed ²	50	100	5	10
Milk	20 -100	50	1	10

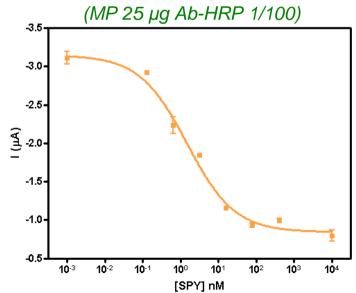
¹ LOD for least sensitive compound tetracycline quoted (TC<OTC/CTC<DOX)

²Methods currently under evaluation

Sulfasensor® for sulfonamides


Prototype assay

- Competitive antibody based dipstick assay
- Detects more than 10 sulfonamides in honey including; sulfamethazine, sulfathiazole, sulfamerazine, sulfachlorpyridazine, sulfamonomethoxine, sulfamethoxypyridazine, sulfadiazine, sulfadimethoxine, sulfadoxine, sulfaquinoxaline
 - At 25 μg kg⁻¹ or less
- 5 min of sample processing (hydrolysis)
 (trichloroacetic acid, 5 min at ca.100°C)
- 20 min of analysis



Electrochemical Magneto Immunosensor (ECMIS) sulfonamides in honey

Calibration Curve

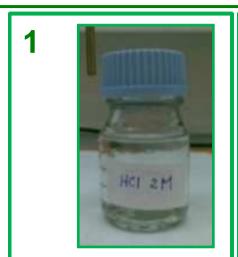
Hydrolysed Honey (1/10 PB, 5min 100°C)

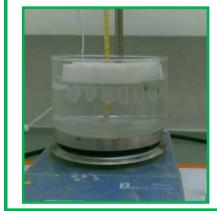
Assay Characteristics

- Easy sample processing :
 - ➤ hydrolysis & conditioning (15 min)
- Total analysis time: 30 samples in 3h 15 min.
- Repeatability: CV 8.9%
- Selectivity:

➤ Up to 11 sulfonamides are detected in honey at <25 µg kg⁻¹

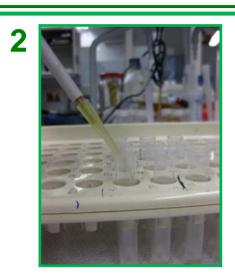
Detection Capability (CCβ) :18.5 µg Kg⁻¹
 (using SPY as reference)




Dia 11

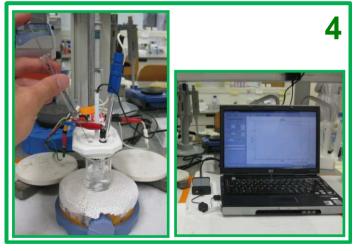
PILAR1

Insertar gráfica , 20-1-2010


ECMIS protocol for sulfonamides in honey

Hydrolyis:
2 N HCl 5 min/ 100 °C
Conditioning:
Neutralization & Buffering

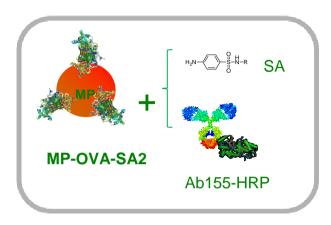
30 samples/15 min


Immunochemical Assay

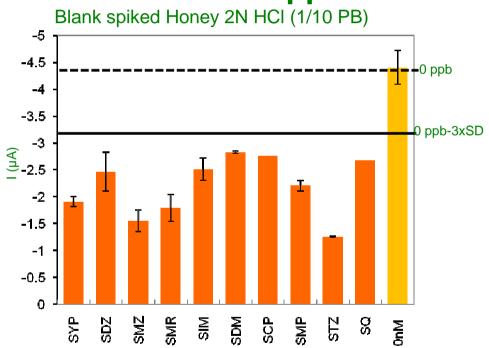
Ab-HRP

+
SA2-OVA-MP

30 samples/45 min



Amperometric Mesures & Data Analysis 4 min / sample


TOTAL ANALYSIS TIME: 3 h 15 min/ 30 samples

ECMIS specificity in honey

10 different SAs were detected below 25 ppb, with an amperometric signal below 3 times the SD of the control zero.

10 Sulfas at 25 ppb

Future plans and dissemination activities

- Dipstick device for MG/LMG in fish
- Multi-sensor (dipstick array) for antibiotics in honey (sulfas, FQs, CAP, tylosin)
- Assay validation
- Predictive hazard modelling study (on farms/ retail samples)
- Presentations at Ghent symposium on hormone and veterinary residue analysis (June 2010)
- Training workshops

